首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91924篇
  免费   7622篇
  国内免费   3954篇
工业技术   103500篇
  2024年   207篇
  2023年   972篇
  2022年   2005篇
  2021年   2454篇
  2020年   2584篇
  2019年   2227篇
  2018年   2145篇
  2017年   2638篇
  2016年   2999篇
  2015年   2971篇
  2014年   5599篇
  2013年   5611篇
  2012年   6900篇
  2011年   6915篇
  2010年   5107篇
  2009年   5350篇
  2008年   4729篇
  2007年   6272篇
  2006年   5832篇
  2005年   5368篇
  2004年   4204篇
  2003年   3823篇
  2002年   3343篇
  2001年   2718篇
  2000年   2263篇
  1999年   1736篇
  1998年   1268篇
  1997年   1044篇
  1996年   808篇
  1995年   744篇
  1994年   549篇
  1993年   427篇
  1992年   331篇
  1991年   254篇
  1990年   190篇
  1989年   205篇
  1988年   119篇
  1987年   141篇
  1986年   98篇
  1985年   97篇
  1984年   92篇
  1983年   53篇
  1982年   28篇
  1981年   9篇
  1980年   17篇
  1979年   17篇
  1978年   4篇
  1977年   8篇
  1976年   5篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 890 毫秒
1.
2.
In order to reveal the mechanism of water fog explosion suppression and research the combined effect of water fog and obstacle on hydrogen/air deflagration, multiple sets of experiments were set up. The results show that the instability of thermal diffusion under lean combustion conditions is the main influencing factor of hydrogen/air flame surface instability, and the existence of water fog will aggravate the hydrogen/air flame surface instability. When obstacle is not considered, 8 μm, 15 μm, 30 μm water fog can significantly reduce the flame velocity and explosion overpressure of hydrogen/air, 45 μm fine water fog plays the opposite role. When considering the relative position of the water fog release position and the obstacle, the 8 μm, 15 μm, 30 μm water fog has almost no suppression effect when released near the obstacle, but a significant suppression effect occur, when using the 45 μm water fog. In the field of theoretical research, the research results not only provide an experimental basis for the fine water fog to reduce the consequences of hydrogen explosion accidents, and the optimal diameter range used by the water fog, but also provide experimental reference for the numerical simulation of hydrogen/air explosion suppression in semi-open space, and promote the development of hydrogen explosion suppression theory. In terms of engineering applications, this study can provide a theoretical basis for the layout of fire fighting equipment in the engine room of nuclear power plants or hydrogen-powered ships.  相似文献   
3.
Diffusers are widely-used to quickly dilute effluents in receiving water bodies. This study proposed a novel diffuser that pre-mixes effluent with ambient water before discharging and that uses the swirling jet to further enhance near-field dilution. The nozzle of the diffuser was examined in two ambient flow conditions: co-flow and counter-flow that are commonly-met in the environment such as oceans due to tidal effect. Physical experiments were first conducted in co-flow on its dilution performance and hydrodynamics, using heated water as the effluent. A 3-D CFD model was developed and calibrated the co-flow scenarios, and then used to investigate the diffuser in counter-flow. The results showed that the nozzle can effectively reduce the maximum temperature rise of the effluent by about 50 % before discharging. The swirling jet from the outlet has a larger shear area, half-width and entrainment rate, enabling the effluent to be rapidly diluted to a minimum of around 10 times at x/D = 6 in co-flow, whereas the dilution for conventional nozzles is about 1 because of the potential core. The flow amplification ratio (α) decreases gradually with increasing velocity ratio in co-flow but increases with increasing velocity ratio in counter-flow. The counter-flow reduces the water drawn into the device; however, the pre-dilution effect at the outlet remains stable. The near-field dilution in counter-flow was significantly enhanced than that in co-flow. Environmental regulations at outfalls and mixing zones can be more easily met using this novel diffuser.  相似文献   
4.
The effects of high-pressure-modified soy 11S globulin (0.1, 200, and 400 MPa) on the gel properties, water-holding capacity, and water mobility of pork batter were investigated. The high-pressure-modified soy 11S globulin significantly increased (P < 0.05) the emulsion stability, cooking yield, hardness, springiness, chewiness, resilience, cohesiveness, the a* and b* values, and the G′ and G′′ values of pork batter at 80 °C, compared with those of 0.1 MPa-modified globulin. In contrast, the centrifugal loss and initial relaxation time of T2b, T21, and T22 significantly decreased (P < 0.05). Meanwhile, the microstructure was denser, and the voids were smaller and more uniform compared with those of 0.1 MPa-modified globulin. In addition, the sample with 11S globulin modified at 400 MPa had the best water-holding capacity, gel structure, and gel properties among the samples. Overall, the use of high-pressure-modified soy 11S globulin improved the gel properties and water-holding capacity of pork batter, especially under 400 MPa.  相似文献   
5.
The motion trajectory of hydrogen leakage is an essential safe issue for the application of hydrogen energy. A dimensionless fast-running motion trajectory prediction model is proposed to predict the dispersion characteristics of the buoyant jet of hydrogen leakage for the accident. The impact of different leakage angles, leakage velocity and thermal stratification of ambient air on hydrogen leakage behavior was analyzed. The new developed model was verified by experimental results in literatures. Leakage hydrogen can flow upwards freely in a uniform environment. However, it shows an oscillating trajectory at a certain height in a thermally stratified environment, which is so called “locking phenomenon”. The trajectory of hydrogen leakage is upward and hydrogen gathers at the top of the space to form stratification in a uniform environment, while the hydrogen leakage shows an oscillating trajectory at a certain height in a thermal stratification environment. With the increase of Froude number Fr, it shows that the stable height and maximum height of the leakage airflow have a trend of rising first and then falling in a thermally stratified environment. The findings are expected to give guidance in real-world situations, for example, a larger Fr value and a larger temperature gradient can lead to a decrease in the stable height in the thermally stratified environment. It is found that the fitting of the stable height with different temperature gradients satisfies the power function relationship. This work is expected to be helpful for reducing hydrogen leakage accumulation and explosion risk.  相似文献   
6.
Cathode channel of a PEM fuel cell is the critical domain for the transport of water and heat. In this study, a mathematical model of water and heat transport in the cathode channel is established by considering two-phase flow of water and air as well as the phase change between water and vapor. The transport process of the species of air is governed by the convection-diffusion equation. The VOSET (coupled volume-of-fluid and level set method) method is used to track the interface between air and water, and the phase equilibrium method of water and vapor is employed to calculate the mass transfer rate on the two-phase interface. The present model is validated against the results in the literature, then applied to investigate the characteristics of two-phase flow and heat transfer in the cathode channel. The results indicate that in the inlet section, water droplets experience three evolution stages: the growing stage, the coalescence stage and the generation stage of dispersed water drops. However, in the middle and outlet sections of the channel, there are only two stages: the growth of water droplets, and the formation of a water film. The mass transfer rate of phase change in the inlet section of the channel varies over time, exhibiting an initial increase, a decrease followed, and a stabilization finally, with the maximum and stable values of 1.78 × 10?4 kg/s and 1.52 × 10?4 kg/s for Part 1, respectively. In the middle and outlet sections, the mass transfer rate increase firstly and then keeps stable gradually. Furthermore, regarding the distribution of the temperature and vapor mass fraction in the channel, near the upper surface of the channel, the temperature and vapor mass fraction first change slightly (x < 0.03 m) and then rapidly decrease with fluctuations (x > 0.03 m). In the middle of the channel, the temperature and vapor mass fraction slowly decrease with fluctuation.  相似文献   
7.
A new catalyst for both water reduction and oxidation, based on an infinite chain, {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n, is formed by the reaction of NiCl2, 1,3-propanediamine (tn) and K3 [Fe(CN)6]. {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n can electro-catalyze hydrogen evolution from a neutral aqueous buffer (pH 7.0) with a turnover frequency (TOF) of 1561 mol of hydrogen per mole of catalyst per hour (H2/mol catalyst/h) at an overpotential (OP) of 837 mV {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n also can electro-catalyze O2 production from water with a TOF of ~45 mol O2 (mol cat)?1s?1 at an OP of 591 mV. Under blue light (λ = 469 nm), together with CdS nanorods (CdS NRs) as a photosensitizer, and ascorbic acid (H2A) as a sacrificial electron donor, {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n can photo-catalyze hydrogen generation from an aqueous buffer (pH 4.0) with a turnover number (TON) of 11,450 mol H2 per mole of catalyst (mol of H2 (mol of cat)?1) during 10 h irradiation. The average of apparent quantum yield (AQY) is as high as 40.96% during 10 h irradiation. Studies indicate that {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n exists in two forms: a cyano-bridged chain ({[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n) in solid, and a salt ([Ni(tn)2]3 [Fe(CN)6]2) in aqueous media; Catalytic reaction occurs on the nickel center of [Ni(tn)2]2+, and the introduction of [Fe(CN)6]3- can improve the catalytic efficiency of [Ni(tn)2]2+ for H2 or O2 generation. We hope these findings can afford a new method for the design of catalysts for both water reduction and oxidation.  相似文献   
8.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
9.
为研究金针菇多糖(polysaccharide from Flammulina velutipes,FVP)对微冻大黄鱼及鱼片在贮藏期间肌原纤维蛋白性质的变化及水分分布的影响,实验分别选用0.03、0.06、0.09 g/L FVP浸渍处理大黄鱼和鱼片,以无菌水处理为对照组,分析微冻贮藏期间样品的感官指标得分、总挥发性盐基氮含量、总巯基含量、Ca2+-ATPase活性、蛋白流变学性质以及水分迁移变化规律。结果表明:FVP可有效抑制整鱼总挥发性盐基氮含量上升和感官得分的下降;减缓整鱼及鱼片在微冻过程中总巯基含量、Ca2+-ATPase活性下降和水分流失;此外FVP还能够延缓大黄鱼因腐败而出现的蛋白凝胶能力减弱。在本实验选取的多糖浓度范围内,0.09 g/L FVP处理组保鲜效果较强。该研究结果可为FVP用于水产品贮运保鲜提供理论参考。  相似文献   
10.
Mercury, lead, and cadmium are among the most toxic and carcinogenic heavy metal ions (HMIs), posing serious threats to the sustainability of aquatic ecosystems and public health. There is an urgent need to remove these ions from water by a cheap but green process. Traditional methods have insufficient removal efficiency and reusability. Structurally robust, large surface-area adsorbents functionalized with high-selectivity affinity to HMIs are attractive filter materials. Here, an adsorbent prepared by vulcanization of polyacrylonitrile (PAN), a nitrogen-rich polymer, is reported, giving rise to PAN-S nanoparticles with cyclic π-conjugated backbone and electronic conductivity. PAN-S can be coated on ultra-robust melamine (ML) foam by simple dipping and drying. In agreement with hard/soft acid/base theory, N- and S-containing soft Lewis bases have strong binding to Hg2+, Pb2+, Cu2+, and Cd2+, with extraordinary capture efficiency and performance stability. Furthermore, the used filters, when collected and electrochemically biased in a recycling bath, can release the HMIs into the bath and electrodeposit on the counter-electrode as metallic Hg0, Pb0, Cu0, and Cd0, and the PAN-S@ML filter can then be reused at least 6 times as new. The electronically conductive PAN-S@ML filter can be fabricated cheaply and holds promise for scale-up applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号