首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1674篇
  免费   54篇
  国内免费   11篇
工业技术   1739篇
  2024年   2篇
  2023年   42篇
  2022年   81篇
  2021年   63篇
  2020年   64篇
  2019年   67篇
  2018年   48篇
  2017年   56篇
  2016年   27篇
  2015年   30篇
  2014年   77篇
  2013年   62篇
  2012年   98篇
  2011年   179篇
  2010年   160篇
  2009年   106篇
  2008年   131篇
  2007年   147篇
  2006年   93篇
  2005年   52篇
  2004年   66篇
  2003年   32篇
  2002年   20篇
  2001年   16篇
  2000年   7篇
  1999年   7篇
  1998年   4篇
  1996年   2篇
排序方式: 共有1739条查询结果,搜索用时 15 毫秒
61.
Effective cooling is critical for safe and efficient operation of proton exchange membrane fuel cell (PEMFC) stacks with high power. The narrow range of operating temperature and the small temperature differences between the stack and the ambient introduce significant challenges in the design of a cooling system. To promote the development of effective cooling strategies, cooling techniques reported in technical research publications and patents are reviewed in this paper. Firstly, the characteristics of the heat generation and cooling requirements in a PEMFC stack are introduced. Then the advantages, challenges and progress of various cooling techniques, including (i) cooling with heat spreaders (using high thermal conductivity materials or heat pipes), (ii) cooling with separate air flow, (iii) cooling with liquid (water or antifreeze coolant), and (iv) cooling with phase change (evaporative cooling and cooling through boiling), are systematically reviewed. Finally, further research needs in this area are identified.  相似文献   
62.
A small air-breathing proton exchange membrane fuel cell with a cylindrical configuration (Cy-PEMFC) and a helical flow-channel was developed to provide a uniform contact pressure to the membrane electrode assembly (MEA) with a thin cathode current collector. A comparison of the contact pressure and performance of the Cy-PEMFC and general planar PEMFC was performed to determine the effect of the cylindrical configuration. For the contact pressure comparison, numerical analysis was performed using commercial software. Numerical analysis showed that the Cy-PEMFC has its own structural advantage of changing the applied clamping pressure to a uniformly distributed contact pressure. The actual pressure measurements were carried out with pressure-sensitive film to support results of numerical analysis. These results also showed that the Cy-PEMFC had a uniformly distributed contact pressure, whereas the planar PEMFC did not. The polarization curves of both PEMFCs were measured to determine the performance variations caused by the uniform contact pressure and better mass transfer. The maximum power density of the Cy-PEMFC was 220 mW/cm2, which was approximately 24% higher than the planar PEMFC.  相似文献   
63.
Nanostructured Pt and Pt3Co cathodes for proton exchange membrane fuel cells (PEMFCs) have been prepared by pulse electrodeposition. For high utilization the catalyst nanoparticles are directly deposited on the microporous layer (MPL) of a commercial available gas diffusion layer (GDL). In order to increase the hydrophilic nature of the substrate surface and thus improve drastically the electrodeposition process and the fuel cell performance, prior to electrodeposition, the carbon substrate is submitted to O2/Ar plasma activation. Cathodes with different amounts and distributions of Aquivion ionomer within the cathode catalyst layer (CCL) thickness (“homogeneous”, “gradient” and “anti-gradient”), different catalysts (Pt and Pt3Co) at varied plasma duration and catalyst loading have been prepared. The cathodes are analysed via attenuated total reflection (ATR-IR), goniometer, SEM, 0.5 M H2SO4 half-cell and 25 cm2 H2/Air single PEMFC. The highest single fuel cell performance is obtained for 2 min plasma activated Pt3Co cathode.  相似文献   
64.
李俊  张震 《材料导报》2011,(3):48-51,56
系统总结了质子交换膜燃料电池(PEMFC)用催化剂的种类,以及其在长时间运行过程中性能衰减的主要原因,归纳了近年来提高催化剂稳定性的改进方法,包括改变合金组成、对催化剂表面进行修饰、选择高稳定性催化剂载体、制备新型催化剂材料;最后提出了该催化剂材料研究中存在的问题和今后的发展方向。  相似文献   
65.
In this paper, an electrochemical‐based proton exchange membrane fuel cell (PEMFC) model suitable for engineering applications is presented. In order to improve the accuracy of this model so that it can reflect the actual PEMFC performance better, its parameters are optimized by means of a modified particle swarm optimization (MPSO). The MPSO is a modified method for the PSO's inertia weight. The proposed inertia weight is calculated according to the distance of the particle's current position from the best solution of the entire swarm. The obtained results of the PEMFC model with optimized parameters agree with experimental data well. Therefore, the MPSO is a helpful and reliable technique for optimizing the model parameters and can be used to solve other complex parameter optimization problems of fuel cell models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
66.
This paper presents a numerical modeling, provides an improved understanding of the fundamental transport phenomena inside the PEM fuel cell. The problem is stated in a steady-state, two-dimensional model and Cartesian coordinates system by using a single domain and a control volume method. The model consists of non-linear, coupled partial differential equations representing the conservation of mass, momentum, species, charges and energy with electrochemical reactions that are valid for gas diffusion electrodes, catalyst layers and membrane region. The modeling of bidirectional, non-isothermal and steady problem of PEMFC provides results concerning the species fraction, potential and temperature distribution in different domain.  相似文献   
67.
Generally, multi-phase models for the proton exchange membrane fuel cell (PEMFC) that seek to capture the local transport phenomena are inherently non-linear with high computational overhead. We address the latter with a reduced multi-phase, multicomponent, and non-isothermal model that is inexpensive to compute without sacrificing geometrical resolution and the salient features of the PEMFC - this is accomplished by considering a PEMFC equipped with porous-type flow fields coupled with scaling arguments and leading-order asymptotics. The reduced model is verified with the calibrated and validated full model for three different experimental fuel cells: good agreement is found. Overall, memory requirements and computational time are reduced by around 2-3 orders of magnitude. In addition, thermal decoupling is explored in an attempt to further reduce computational cost. Finally, we discuss how other types of flow fields and transient conditions can be incorporated into the mathematical and numerical framework presented here.  相似文献   
68.
This study presents an improved Tank in Series Reactor (TSR) Proton Exchange Membrane (PEM) fuel cell model with mass and energy balance equations accounting for evaporation and condensation in cathode channels. The TSR model includes the modified charge balance equation suitable for potentiostatic fuel cell operation mode. Polarization curves calculated with the improved model agree with experimental data from the literature. The developed TSR model is able to predict the limiting two-dimensional profiles in PEMFC. Simulation results illustrate the influence of co-current and counter current mode on PEM fuel cell performance.  相似文献   
69.
In this work, the performance of a High Temperature (HT) Polymer Electrolyte Fuel Cell (PEFC) stack for co-generation application was investigated. A 3 kW power unit composed of two 1.5 kW modules was designed, manufactured and tested. The module was composed of 40 composite graphite cell with an active area of 150 cm2. Composite Membrane Electrode Assemblies (MEAs) based on Nafion/Zirconia membranes were used to explore the behavior of the stack at high temperature (120 °C). Tests were performed in both pure Hydrogen and H2/CO2/CO mixture at different humidification grade, simulating the exit gas from a methane fuel processor. The fuel cells stack has generated a maximum power of 2400 W at 105 A with pure hydrogen and fully hydrated gases and 1700 W at 90 A by operating at low humidity grade (95/49 RH% for H2/Air). In case the stack was fed with reformate simulated stream fully saturated, a maximum power of 2290 W at 105 A was reached: only a power loss of 5% was recorded by using reformate stream instead of pure hydrogen. The humidification grade of Nafion membrane was indicated as the main factor affecting the proton conductivity of Nafion while the addition of the inert compound like YSZ, did not affectthe electrochemical properties of the membrane but, rather has enhanced mechanical resistance at high temperature.  相似文献   
70.
大功率燃料电池运行条件的研究   总被引:1,自引:1,他引:1  
采用正交法设计实验,利用不同结构的流场组装的两台50kW质子交换膜燃料电池堆运行,探索各种电池运行因素(温度、相对湿度、反应气利用率等)对大功率燃料电池堆稳定运行的影响,获得较优的燃料电池运行条件;为大功率燃料电池发动机的稳定运行提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号