首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18618篇
  免费   579篇
  国内免费   549篇
工业技术   19746篇
  2024年   23篇
  2023年   368篇
  2022年   508篇
  2021年   570篇
  2020年   558篇
  2019年   536篇
  2018年   486篇
  2017年   559篇
  2016年   476篇
  2015年   506篇
  2014年   818篇
  2013年   917篇
  2012年   751篇
  2011年   1552篇
  2010年   1121篇
  2009年   1157篇
  2008年   1112篇
  2007年   1020篇
  2006年   1161篇
  2005年   895篇
  2004年   780篇
  2003年   750篇
  2002年   641篇
  2001年   358篇
  2000年   349篇
  1999年   300篇
  1998年   265篇
  1997年   214篇
  1996年   182篇
  1995年   175篇
  1994年   115篇
  1993年   74篇
  1992年   91篇
  1991年   93篇
  1990年   94篇
  1989年   61篇
  1988年   22篇
  1987年   15篇
  1986年   20篇
  1985年   18篇
  1984年   14篇
  1983年   6篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1979年   5篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
An optimized one-pot recipe has been developed to synthesize a surfactant molecule, referred to as OMID, consisting of an imidazoline head group and aliphatic tail, which is an exemplar corrosion inhibitor for carbon steel in acidic solutions. As evidenced by gas chromatography, 1H and 13C nuclear magnetic resonance, and Fourier-transform infrared data, a high-purity product was achieved without the use of either a solvent or catalyst. Critical micelle concentration values and corrosion inhibition efficiencies ( η %) were determined in aqueous solutions of hydrochloric acid and sulfuric acid using surface tensiometry and linear polarization resistance measurements, respectively. Hydrolysis of the imidazoline head group as a function of pH (0–11) was explored with ultraviolet–visible absorption spectroscopy. In addition, N 1s and C 1s X-ray photoelectron spectroscopy data were acquired from both surface-adsorbed OMID and a multilayer of the imidazoline head group of OMID. These latter data are highly relevant to those attempting to understand OMID inhibition chemistry.  相似文献   
32.
《Ceramics International》2020,46(7):8928-8934
Multifunctional nanomaterials composed of magnetic and fluorescent nanoparticles have been one of the most extensive pursuits because of the potential application in bio-research. In this paper, we demonstrated an efficient method by coupling CdSe/CdS/ZnS quantum dots (QDs) with Fe3O4 magnetic nanoparticles(MNPs) while functionalized multiwall carbon nanotubes (f-MWCNTs) were used as matrix to synthesize a kind of magnetic fluorescent nanocomposite. Compared with other matrix materials, carbon nanotubes have the advantages of high surface areas and good biocompatibility. The incorporation of f-MWCNTs supplies plenty of nucleation sites for the preferential growth of Fe3O4 nanoparticles, avoiding the agglomeration phenomenon of Fe3O4 MNPs in traditional co-precipitation method. Moreover, the un-reacted functional groups of f-MCNTs can further adsorb biological species and drugs, averting the decline of fluorescent intensity caused by the modification of biological species and drugs. The synthetic product maintains the unique properties of rapid magnetic response and efficient fluorescence, which shows a broad application prospect in fluorescent labeling, biological imaging, cell tracking and drug delivery.  相似文献   
33.
《Ceramics International》2022,48(14):20237-20244
Composite anode materials with a unique architecture of carbon nanotubes (CNTs)-chained spinel lithium titanate (Li4Ti5O12, LTO) nanoparticles are prepared for lithium ion capacitors (LICs). The CNTs networks derived from commercial conductive slurry not only bring out a steric hindrance effect to restrict the growth of Li4Ti5O12 particles but greatly enhance the electronic conductivity of the CNTs/LTO composites, both have contributed to the excellent rate capability and cycle stability. The capacity retention at 30 C (1 C = 175 mA g?1) is as high as 89.7% of that at 0.2 C with a CNTs content of 11 wt%. Meanwhile, there is not any capacity degradation after 500 cycles at 5 C. The LIC assembled with activated carbon (AC) cathode and such a CNTs/LTO composite anode displays excellent energy storage properties, including a high energy density of 35 Wh kg?1 at 7434 W kg?1, and a high capacity retention of 87.8% after 2200 cycles at 1 A g?1. These electrochemical performances outperform the reported data achieved on other LTO anode-based LICs. Considering the facile and scalable preparation process proposed herein, the CNTs/LTO composites can be very potential anode materials for hybrid capacitors towards high power-energy outputs.  相似文献   
34.
Recently, quorum sensing (QS) inhibitors (QSIs) have been combined with antibiotics to enhance antibiofilm efficacy in vitro and in vivo. However, targeting QS signals alone is not enough to prevent bacterial infections. Drug resistance and recurrence of biofilms makes it difficult to eradicate. Herein, photodynamic therapy (PDT) is selected to unite QSIs and antibiotics. A synergistically antibiofilm system, which combines QSIs, antibiotics, and PDT based on hollow carbon nitride spheres (HCNSs) is envisaged. First, HCNS provides the multidrug delivering ability, enabling QSIs and antibiotics to be released in sequence. Subsequently, multistage releases sensitize bacteria effectively, potentiating the chemotherapeutic effects of the antibiotics. Finally, the integration of QSIs and PDT not only minimizes the possibility of drug resistance, but also overcomes the problem of limited mass and extension of PDT. Even after 48 h of incubation, the bacterial biofilm is obviously inhibited. And its biofilm disperse efficiency exceeds 48% (compared with QSI‐potentiated chemotherapy group) and 40% (compared with PDT group). Besides, the inhibition of the QS system influences phenotypes related to virulence factor production and surface hydrophobicity, which weaken biofilm invasion and formation. Eventually, this system is applied to disperse bacterial biofilm in vivo. Overall, PDT and QS modulation are devoted to eradicate drug resistance and recurrence of the biofilm.  相似文献   
35.
Carbon-and-oxygen-doped AlN specimens were prepared by combustion synthesis using Al, graphite, and AlN. Graphite addition changed the product color from white to blue. By XRD, the lattice constant increased slightly with increasing carbon content. Blue AlN powder was synthesized with a molar ratio of the diluent AlN of 0.2-0.5 with a fixed graphite content of 0.05. At an AlN molar ratio exceeding 0.6, carbon was not successfully incorporated due to the lower reaction temperature. Calcination at 800°C in air removed residual graphite without changing the crystal structure or product color. Oxygen, nitrogen, and carbon analyses revealed that blue AlN powders contained 0.45-0.54 mass% carbon and 1.4-1.6 mass% oxygen, while the undoped AlN contained 0.021 mass% carbon and 0.94 mass% oxygen. The origin of the white-to-blue color change was investigated via reflection measurements. Blue AlN exhibits an absorption peak at 634 nm (1.96 eV). From first-principles electronic structure calculations, the C-doped AlN and carbon-and-oxygen-doped AlN with a 1:1 ratio could be classified as p-type, whereas the O-doped AlN and 1:3 carbon-and-oxygen-doped AlN were n-type. One reason for the absorption peak at 634 nm may be a transition from the conduction band to an upper unoccupied state. These results suggest the possible control of optical and electronic properties of AlN via carbon-and-oxygen doping.  相似文献   
36.
《Ceramics International》2022,48(24):36238-36248
Cf/SiC composite is an excellent structural and functional material, silicon carbide nanowires (SiCnws) are not only a toughening material but also a great application in the field of microwave absorption. In this study, SiCnws are grown on the surface of carbon fiber (Cf) by polymer impregnation and pyrolysis, and the SiC matrix was prepared by chemical vapor osmosis method. The SiCnws are introduced to enhance the mechanical and microwave absorption properties simultaneously. After 3 impregnations, the flexural strength of the composite was 107.35 ± 10 MPa. When the thickness is 1.86 mm, the minimum reflection loss value is ?41.08 dB, and the effective absorption bandwidth (RL ≤ ?10 dB) is 3.86 GHz. Furthermore, the microwave absorption mechanism of the material is discussed. This work provides a new method to prepare lightweight, stable and high-performance microwave absorption materials, and these materials are expected to be used in high temperature environments.  相似文献   
37.
The light scattering, harvesting and adsorption effects in dye-sensitized solar cells (DSSCs) are studied by preparation of coated carbon nanotubes (CNTs) with TiO2 and Zr-doped TiO2 nanoparticles in the forms of mono- and double-layer cells. X-ray diffraction (XRD) analysis reveals that the phase composition of Zr-doped TiO2 electrode is a mixture of anatase and rutile phases with major rutile content, whereas it is the same mixture with major anatase content for coated CNTs with TiO2. Furthermore, the average crystallite size of Zr-doped TiO2 electrode is slightly decreased with Zr introduction. Field emission scanning electron microscope (FE-SEM) images show that the porosity of Zr-doped TiO2 electrodes is higher than that of undoped electrode, enhancing dye adsorption. UV–visible spectroscopy analysis reveals that the absorption onset of Zr-doped TiO2 electrodes is slightly shifted to longer wavelength (the red-shift) in comparison with that of undoped TiO2 electrode. Moreover, the band gap energy of TiO2 nanoparticles is decreased by Zr introduction, enhancing light absorption. It is found that electron injection of monolayer TiO2 electrode is improved by introduction of 0.025 mol% Zr, resulted in enhancement of its power conversion efficiency (PCE) up to 6.81% compared with 6.17% for pure TiO2 electrode. Moreover, electron transport and light scattering are enhanced by incorporation of 0.025 wt% coated CNTs with TiO2 in the over-layer of double layer electrode. Therefore, double layer solar cell composed of 0.025 mol% Zr-doped TiO2 nanoparticles as the under-layer and mixtures of these nanoparticles and 0.025 wt% coated CNTs with TiO2 as the over-layer shows the highest PCE of 8.19%.  相似文献   
38.
This article reported a series of g–C3N4–CNS (g-C3N4 and carbon nanosheets) composite carriers formed by the hydrothermal method, and then the ethylene glycol reduction method was used to anchor Pt nanoparticles on the g–C3N4–CNS carrier to form the Pt/g–C3N4–CNS catalysts. The electrochemical test for the electrocatalytic oxidation of methanol (MOR) shown that the Pt/20%g–C3N4–CNS catalyst has the best catalytic performance and stability. These Pt/g–C3N4–CNS catalysts were analyzed by TEM, XRD, XPS, and BET characterization. It is discovered that the amount of g-C3N4 greatly influenced the structure and chemical properties of Pt/CNS precursor. As the content of g-C3N4 increases, the content of pyridine nitrogen and pyrrole nitrogen also increases, and N species can enhance the interaction between Pt nanoparticles and CNS, promote Pt dispersion, and increase the specific surface area of the catalyst. Similarly, an excessive addition of g-C3N4 will cause a sharp decline in the conductivity of the catalyst, and then led to the decline of MOR activity.  相似文献   
39.
The present paper tests experimentally the through-thickness electrical conductivity of carbon fiber-reinforced polymer (CFRP) composites laminates for aircraft applications. Two types of samples were prepared: Type A samples with carbon nanotubes (CNTs) and Type B samples without CNTs. During the electrical experiments, electrical currents of several mA were injected through the specimens. Electrical resistance was monitored simultaneously in order to deduce the changes in the through-the-thickness electrical conductivity caused by the addition of CNTs. Improvement of electrical conduction by two orders of magnitude was achieved through the addition of 1 wt% carbon nanotubes as compared to classic CFRP without CNTs. For moisture saturated samples, the influence of moisture absorption on such measures was found to be negligible.  相似文献   
40.
One of the biggest challenges of the materials science is the mutual exclusion of strength and toughness. This issue was minimized by mimicking the natural structural materials. To date, few efforts were done regarding materials that should be used in harsh environments. In this work we present novel continuous carbon fiber reinforced ultra-high-temperature ceramic matrix composites (UHTCMCs) for aerospace featuring optimized fiber/matrix interfaces and fibers distribution. The microstructures – produced by electrophoretic deposition of ZrB2 on unidirectional carbon fibers followed by ZrB2 infiltration and hot pressing – show a maximum flexural strength and fracture toughness of 330 MPa and 14 MPa m1/2, respectively. Fracture surfaces are investigated to understand the mechanisms that affect strength and toughness. The EPD technique allows the achievement of a peculiar salami-inspired architecture alternating strong and weak interfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号