首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   455287篇
  免费   37407篇
  国内免费   20562篇
工业技术   513256篇
  2024年   1397篇
  2023年   6900篇
  2022年   12155篇
  2021年   18159篇
  2020年   13645篇
  2019年   11167篇
  2018年   12553篇
  2017年   14125篇
  2016年   12894篇
  2015年   17421篇
  2014年   22392篇
  2013年   27454篇
  2012年   29340篇
  2011年   31902篇
  2010年   27847篇
  2009年   26508篇
  2008年   25473篇
  2007年   24260篇
  2006年   24564篇
  2005年   21332篇
  2004年   15027篇
  2003年   13848篇
  2002年   13710篇
  2001年   12109篇
  2000年   10767篇
  1999年   11681篇
  1998年   9849篇
  1997年   8242篇
  1996年   7623篇
  1995年   6279篇
  1994年   5114篇
  1993年   3850篇
  1992年   3054篇
  1991年   2253篇
  1990年   1766篇
  1989年   1477篇
  1988年   1183篇
  1987年   801篇
  1986年   634篇
  1985年   483篇
  1984年   337篇
  1983年   274篇
  1982年   248篇
  1981年   218篇
  1980年   209篇
  1979年   135篇
  1978年   93篇
  1977年   90篇
  1976年   104篇
  1975年   56篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Relatively low efficiency is the biggest obstacle to the popularization of water electrolysis, which is a particularly feasible way to produce super-pure hydrogen. Imposing a magnetic field can increase the hydrogen production efficiency of water electrolysis. However, the enhancement's detailed mechanism still lacks an insightful understanding of the bubbles' micro vicinity. Our recent work aims to understand why the micro-magnetohydrodynamic (MHD) convection hinders single bubbles' detachment on the microelectrode. A water electrolysis experiment by microelectrode is performed under an electrode-normal magnetic field, and dynamic analysis of the single bubble growing on microelectrodes is performed. The variation of bubble diameter with time in the presence or absence of the magnetic field was measured, and the forces acting on the bubble were quantified. The result shows that the micro-MHD convection, induced by Lorentz force, can give rise to a downward hydrodynamic pressure force that will not appear in large-scale MHD convection. This force can be of the same magnitude as the surface tension, so it dramatically hinders bubbles' detachment. Besides, the Kelvin force provides a new potential way for further improving the efficiency of water electrolysis.  相似文献   
42.
The potential of using high metals containing coal gangue and lignite to prepare high-activity coal char-based catalysts is investigated for effective biomass tar decomposition. Loose structure and rough surface are formed for these char-based catalysts with heterogeneous distribution of a large number of inorganic particles. In the biomass tar decomposition, the performance of the coal char-based catalysts is significantly influenced by the content of the metals in the raw materials and coal gangue char (GC) with the ash content as high as 50.80% exhibits the highest activity in this work. A high biomass tar conversion efficiency of 93.5% is achieved at 800 °C along with a significant increase in the fuel gas product. During the five-time consecutive tests, the catalytic performance of GC increases a little at the second or third times reuse and remains relatively stable, showing the remarkable stability of the catalyst in biomass tar decomposition applications.  相似文献   
43.
44.
为研究金针菇多糖(polysaccharide from Flammulina velutipes,FVP)对微冻大黄鱼及鱼片在贮藏期间肌原纤维蛋白性质的变化及水分分布的影响,实验分别选用0.03、0.06、0.09 g/L FVP浸渍处理大黄鱼和鱼片,以无菌水处理为对照组,分析微冻贮藏期间样品的感官指标得分、总挥发性盐基氮含量、总巯基含量、Ca2+-ATPase活性、蛋白流变学性质以及水分迁移变化规律。结果表明:FVP可有效抑制整鱼总挥发性盐基氮含量上升和感官得分的下降;减缓整鱼及鱼片在微冻过程中总巯基含量、Ca2+-ATPase活性下降和水分流失;此外FVP还能够延缓大黄鱼因腐败而出现的蛋白凝胶能力减弱。在本实验选取的多糖浓度范围内,0.09 g/L FVP处理组保鲜效果较强。该研究结果可为FVP用于水产品贮运保鲜提供理论参考。  相似文献   
45.
To evaluate the separate impacts on human health and establish effective control strategies, it is crucial to estimate the contribution of outdoor infiltration and indoor emission to indoor PM2.5 in buildings. This study used an algorithm to automatically estimate the long-term time-resolved indoor PM2.5 of outdoor and indoor origin in real apartments with natural ventilation. The inputs for the algorithm were only the time-resolved indoor/outdoor PM2.5 concentrations and occupants’ window actions, which were easily obtained from the low-cost sensors. This study first applied the algorithm in an apartment in Tianjin, China. The indoor/outdoor contribution to the gross indoor exposure and time-resolved infiltration factor were automatically estimated using the algorithm. The influence of outdoor PM2.5 data source and algorithm parameters on the estimated results was analyzed. The algorithm was then applied in four other apartments located in Chongqing, Shenyang, Xi'an, and Urumqi to further demonstrate its feasibility. The results provided indirect evidence, such as the plausible explanations for seasonal and spatial variation, to partially support the success of the algorithm used in real apartments. Through the analysis, this study also identified several further development directions to facilitate the practical applications of the algorithm, such as robust long-term outdoor PM2.5 monitoring using low-cost light-scattering sensors.  相似文献   
46.
Bulletin of Engineering Geology and the Environment - Bio-cementation is currently applied to solidify sandy soils, but only few studies use it to cement loess soil particles. In this study, the...  相似文献   
47.
The purpose of the current work was to research the effect of alkali metal oxide on the structure, thermal properties, viscosity and chemical stability in the glass system (R2O–CaO–B2O3–SiO2) systematically. Because the glass would emulsify when Li2O was added to the glass batch, this article did not discuss Li2O. The results showed that when the amount of Na2O was less than 4 mol.%, there was a higher interconnectivity of borate and silicate sub-networks in glass, as more mixed Si–O–B bonds were present in glass. The glass samples exhibited excellent thermal properties and chemical stabilities. As the amount of Na2O exceeded 4 mol.%, the interconnectivity of borate and silicate sub-networks was weakened. The thermal properties and chemical stabilities of the glass samples were reduced. The connectivity of the silicate sub-network was weakened slightly as the Na/K ratio varied, and the coefficient of thermal expansion (CTE) of the glass samples gradually increased, and the resistance to thermal shock (RTS) value gradually decreased. Moreover, the viscosity of the glass samples decreased with the ratio of Na/Si and Na/K increased.  相似文献   
48.
The in situ axial X-ray diffraction patterns of four ceramic powder samples (MgO, Al2O3, AlN, and cBN) that were compressed in a diamond anvil cell under uniaxial non-hydrostatic conditions were recorded. The microscopic deviatoric stress as a function of the pressure was determined from the X-ray diffraction peak broadening analysis: the curves increased approximately linearly with the pressure at the initial compression stage and then levelled off under further compression. Pressure-induced transparency was observed in all of the samples under compression, and the pressure at the turning point on the curves of the microscopic deviatoric stress versus pressure corresponded to the pressure at which the samples became transparent. Analysis of the microstructural features of the pressure-induced transparent samples indicated that the compression caused the grains to fracture, and the broken grains bonded with each other. We demonstrated that the ceramics’ pressure-induced transparency was a process during which the grains were squeezed and broken, the pores were close between the grains, and the broken grains were re-bonded under compression.  相似文献   
49.
Ultrawide band gap semiconductor materials have attracted considerable attention in recent years owing to their great potential in the photocatalytic field. In this study, Zn-doped Ga2O3 nanofibers with various concentrations were synthesized via electrospinning; they exhibited a superior photocatalytic degradation performance of rhodamine B dye compared to that of undoped Ga2O3 nanofibers. The Zn dopant replaced Ga sites via replacement doping, which could increase the concentration of oxygen vacancies and lead to enhanced photocatalytic properties. When the Zn concentration increased, a Ga2O3/ZnGa2O4 hybrid structure formed, which could further enhance the photocatalytic performance. The separation of photogenerated carriers due to Zn doping and heterojunctions were the primary causes of the enhanced photocatalytic performance. This study provides experimental data for the fabrication of high-performance photocatalysts based on Ga2O3 nanomaterials.  相似文献   
50.
Developing the thermal stability of metal-based ceramic composites or their films has always been challenging and bottlenecks for the utilization of energy. In this paper, the novel mesh-like functional Al doped-MoO3 nanocomposite film with even distribution and high purity was firstly fabricated by the high-efficiency electrophoretic deposition and surface modification. The optimal suspension turned out to be the mixture of isopropanol and the additives of polyethyleneimine and benzoic acid. The microtopography, crystalline structure, environmental resistance and thermal stability were analyzed by field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX), X-ray diffractometer (XRD), exposure and droplet-impacting test, DSC analysis and ignition test, respectively. The water contact angle and sliding angle of product can reach ~170° and <1°, indicating the excellent anti-wetting property. In addition, the high heat-release (~3180 J/g) of product all kept almost unchangeable after six months exposure experiments, demonstrating the outstanding thermostability. The exquisite design idea here can perfectly match microelectromechanical system (MEMS), providing the valuable reference for fabricating other metal-based high-energy composites with long lifespan for real industrial applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号