首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83066篇
  免费   6337篇
  国内免费   2737篇
工业技术   92140篇
  2024年   206篇
  2023年   1281篇
  2022年   1813篇
  2021年   3052篇
  2020年   2330篇
  2019年   2133篇
  2018年   2516篇
  2017年   2784篇
  2016年   2428篇
  2015年   3006篇
  2014年   3884篇
  2013年   4937篇
  2012年   4966篇
  2011年   5625篇
  2010年   4738篇
  2009年   4482篇
  2008年   4385篇
  2007年   4123篇
  2006年   4127篇
  2005年   3747篇
  2004年   2584篇
  2003年   2359篇
  2002年   2113篇
  2001年   1838篇
  2000年   1993篇
  1999年   2244篇
  1998年   2226篇
  1997年   1743篇
  1996年   1603篇
  1995年   1336篇
  1994年   1101篇
  1993年   872篇
  1992年   646篇
  1991年   513篇
  1990年   413篇
  1989年   337篇
  1988年   280篇
  1987年   189篇
  1986年   154篇
  1985年   164篇
  1984年   127篇
  1983年   78篇
  1982年   84篇
  1981年   70篇
  1980年   63篇
  1979年   51篇
  1978年   35篇
  1977年   58篇
  1976年   86篇
  1975年   45篇
排序方式: 共有10000条查询结果,搜索用时 24 毫秒
81.
Low-loss (Zn1-xNix)ZrNbTaO8 (0.02?≤?x?≤?0.10) ceramics possessing single wolframite structure are initiatively synthesized by solid-state route. Based on the results of Rietveld refinement, complex chemical bond theory is used to establish the correlation between structural characteristics and microwave performance in this ceramic system. A small amount of Ni2+ (x?=?0.06) in A-site with the fixed substitution of Ta5+ in B-site can effectually raise the Q?×?f value of ZnZrNb2O8 ceramic, embodying a dense microstructure and high lattice energy. The dielectric constant and τf are mainly affected by bond ionicity and the average octahedral distortion. The (Zn0.94Ni0.06)ZrNbTaO8 ceramic sample sintered at 1150?°C for 3?h exhibits an outstanding combination of microwave dielectric properties: εr =?27.88, Q?×?f?=?128,951?GHz, τf =?–39.9?ppm/°C. Thus, it is considered to be a candidate material for the communication device applications at high frequency.  相似文献   
82.
The electrochemical reduction of carbon dioxide (CO2) to hydrocarbons is a challenging task because of the issues in controlling the efficiency and selectivity of the products. Among the various transition metals, copper has attracted attention as it yields more reduced and C2 products even while using mononuclear copper center as catalysts. In addition, it is found that reversible formation of copper nanoparticle acts as the real catalytically active site for the conversion of CO2 to reduced products. Here, it is demonstrated that the dinuclear molecular copper complex immobilized over graphitized mesoporous carbon can act as catalysts for the conversion of CO2 to hydrocarbons (methane and ethylene) up to 60%. Interestingly, high selectivity toward C2 product (40% faradaic efficiency) is achieved by a molecular complex based hybrid material from CO2 in 0.1 m KCl. In addition, the role of local pH, porous structure, and carbon support in limiting the mass transport to achieve the highly reduced products is demonstrated. Although the spectroscopic analysis of the catalysts exhibits molecular nature of the complex after 2 h bulk electrolysis, morphological study reveals that the newly generated copper cluster is the real active site during the catalytic reactions.  相似文献   
83.
84.
Background: Epilepsy is a chronic neurological disorder characterized by the recurrence of seizures. One-third of patients with epilepsy may not respond to antiseizure drugs. Purpose: We aimed to examine whether D-limonene, a cyclic monoterpene, exhibited any antiseizure activity in the pentylenetetrazole (PTZ)-induced kindling mouse model and in vitro. Methods: PTZ kindling mouse model was established by administering PTZ (30 mg/kg) intraperitoneally to mice once every 48 h. We performed immunoblot blots, immunohistochemistry (IHC), and high-performance liquid chromatography (HPLC) analysis after the behavioral study. Results: An acute injection of PTZ (60 mg/kg) induced seizure in mice, while pretreatment with D-limonene inhibited PTZ-induced seizure. Repeated administration of PTZ (30 mg/kg) increased the seizure score gradually in mice, which was reduced in D-limonene (10 mg/kg)-pretreated group. In addition, D-limonene treatment increased glutamate decarboxylase-67 (GAD-67) expression in the hippocampus. Axonal sprouting of hippocampal neurons after kindling was inhibited by D-limonene pretreatment. Moreover, D-limonene reduced the expression levels of Neuronal PAS Domain Protein 4 (Npas4)-induced by PTZ. Furthermore, the adenosine A2A antagonist SCH58261 and ZM241385 inhibited anticonvulsant activity and gamma-aminobutyric acid (GABA)ergic neurotransmission-induced by D-limonene. Conclusion: These results suggest that D-limonene exhibits anticonvulsant activity through modulation of adenosine A2A receptors on GABAergic neuronal function.  相似文献   
85.
Here, we report a facile approach to electrostatically couple the surface charges of graphite nanoplate (GNP) fillers and poly(methyl methacrylate) (PMMA) polymer particles using ethylene maleic anhydride (EMA) copolymer as an electrostatic coupling agent. Our strategy involved switching the intrinsic repulsive electrostatic interactions between the directly exfoliated GNPs fillers and the PMMA particles to attractive electrostatic surface interactions for preparing core(PMMA)-shell (GNP) precursor in order to optimizing 3-dimensionally dispersed polymer nanocomposite. As a result, the electrical conductivity of the composites dramatically increased by a factor of 16.7 in the EMA-coupled GNP/PMMA composites compared with that of the EMA-free GNP/PMMA composites. In addition, the percolation threshold was also notably reduced from 0.32 to 0.159 vol% after electrostatic coupling of the GNPs fillers and PMMA particles. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48390.  相似文献   
86.
Vitrified bond CBN grinding wheels are being widely used due to their superior performance. Also, advantages of vitrified grinding wheels are high elastic modulus, stable chemical property, and low thermal expansion coefficient. Brittleness and low strength are key factors restricting the development of vitrified bond CBN grinding wheels. In this paper, the sintering in a high magnetic field was innovatively introduced into the manufacturing of vitrified bond CBN grinding wheels, and the effects of sintering in a high magnetic field on properties on vitrified bond and vitrified CBN composites were systematically investigated. Vitrified bond was characterized using three-point bending, scanning electron microscopy, X-ray diffraction. It was observed that microstructure of vitrified bond could be changed, grain orientation could be controlled and average grain size could be decreased in a high magnetic field, while vitrified bond strength could be simultaneously improved. High quality vitrified bond could be obtained by appropriately adjusting the strength and direction of high magnetic field. Results demonstrated that vitrified bond properties were improved when the magnetic field strength was 6?T. In order to highlight the high magnetic field effect on the vitrified CBN composites, the ordinary CBN abrasives and nickel plated CBN abrasives were used respectively. Microstructures, bending strengths of vitrified CBN composites were compared in different high magnetic fields. When the magnetic field strength was appropriate (less than 6?T), the binding characteristic of vitrified bond CBN composites with nickel plated CBN abrasives was greatly improved. The highest bending strength value of vitrified CBN composites was 79.5?MPa in 6?T high magnetic field.  相似文献   
87.
88.
Three kinds of ethylene-octene copolymers (POE) were melt-blended with high-density polyethylene (PE-HD) in different proportions. Detailed characterizations were conducted to analyze their structural differences of POE and its effects in toughening PE-HD. The higher molecular weight POE can improve the toughness of PE-HD. 60:40 PE-HD/POE is elongated to break up to 700% while impact strength is 84.7 kJ/m2 at −30°C, which is 21-fold of PE-HD. In the brittle to ductile transition (BDT) during impact, the fracture mechanism changes from the crazing mode to the shear yield-plastic deformation mode. The BDT temperature decreases as the POE molecular weight and its content increase. The interface strength in tension is estimated to access their effects. The Boltzmann-type models were successfully extended to describe the typical S-shaped curves in BDT of notched impact strength vs POE content or temperature. The supplementary decay model is suggested for the attenuation in toughening. Transition map in impact is proposed to select the use range of composition (c ) and temperature (T ) for high toughness. The curves are converted into 3D graph of T -c -impact strength for illustrating their coupling-separate effects, and further into the contour map of impact strength in T -c space for finding their partial equivalence.  相似文献   
89.
90.
Sun  Xiuping  Wang  Lu  Li  Chuanchuan  Wang  Debao  Sikandar  Iqbal  Man  Ruxia  Tian  Fang  Qian  Yitai  Xu  Liqiang 《Nano Research》2021,14(12):4696-4703

Sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) have been considered as attractive alternatives for next-generation battery systems, which have promising application potential due to their earth abundance of potassium and sodium, high capacity and suitable working potential, however, the design and application of bi-functional high-performance anode still remain a great challenge up to date. Bismuth sulfide is suitable as anode owing to its unique laminar structure with relatively large interlayer distance to accommodate larger radius ions, high theoretical capacity and high volumetric capacity etc. In this study, dandelion-like Bi2S3/rGO hierarchical microspheres as anode material for PIBs displayed reversible capacity, and 206.91 mAh·g−1 could be remained after 1,200 cycles at a current density of 100 mA·g−1. When applied as anode materials for SIBs, 300 mAh·g−1 could be retained after 300 cycles at 2 A·g−1 and its initial Coulombic efficiency is as high as 97.43%. Even at high current density of 10 A·g−1, 120.3 mAh·g−1 could be preserved after 3,400 cycles. The Na3V2(PO4)3@rGO//Bi2S3/rGO sodium ion full cells were successfully assembled which displays stable performance after 60 cycles at 100 mA·g−1. The above results demonstrate that Bi2S3/rGO has application potential as high performance bi-functional anode for PIBs and SIBs.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号