首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   954篇
  免费   70篇
  国内免费   5篇
工业技术   1029篇
  2024年   2篇
  2023年   15篇
  2022年   32篇
  2021年   54篇
  2020年   43篇
  2019年   29篇
  2018年   53篇
  2017年   37篇
  2016年   51篇
  2015年   51篇
  2014年   53篇
  2013年   130篇
  2012年   60篇
  2011年   75篇
  2010年   52篇
  2009年   36篇
  2008年   35篇
  2007年   22篇
  2006年   14篇
  2005年   30篇
  2004年   20篇
  2003年   11篇
  2002年   8篇
  2001年   7篇
  2000年   6篇
  1999年   11篇
  1998年   18篇
  1997年   9篇
  1996年   7篇
  1995年   7篇
  1994年   2篇
  1993年   5篇
  1992年   1篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
排序方式: 共有1029条查询结果,搜索用时 31 毫秒
41.
Vanadium pentoxide nanoparticles were synthesized using a solvo-thermal method and were characterized via X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The ozonation of palm oil was performed by using vanadium pentoxide nanoparticles as catalysts to synthesize ethyl malonate. This procedure presented several advantages, such as simple operation for a precise ozonation, excellent yield, short reaction times and reusability because of the recyclability of palm oil. Ethyl malonate was synthesized via the one-step ozonolysis of palm oil and was spectroscopically characterized using gas chromatography-mass spectroscopy (GC-MS).  相似文献   
42.
43.
Ti-6Al-4V sheets, 3.2-mm in thickness, were butt welded using a continuous wave 4 kW Nd:YAG laser welding system. The effect of two main process parameters, laser power and welding speed, on the joint integrity was characterized in terms of the joint geometry, defects, microstructure, hardness, and tensile properties. In particular, a digital image correlation technique was used to determine the local tensile properties of the welds. It was determined that a wide range of heat inputs can be used to fully penetrate the Ti-6Al-4V butt joints during laser welding. At high laser power levels, however, significant defects such as underfill and porosity, can occur and cause marked degradation in the joint integrity and performance. At low welding speeds, however, significant porosity occurs due to its growth and the potential collapse of instable keyholes. Intermediate to relatively high levels of heat input allow maximization of the joint integrity and performance by limiting the underfill and porosity defects. In considering the effect of the two main defects on the joint integrity, the underfill defect was found to be more damaging to the mechanical performance of the weldment than the porosity. Specifically, it was determined that the maximum tolerable underfill depth for Ti-6Al-4V is approximately 6 pct of the workpiece thickness, which is slightly stricter than the value of 7 pct specified in AWS D17.1 for fusion welding in aerospace applications. Hence, employing optimized laser process parameters allows the underfill depth to be maintained within the tolerable limit (6 pct), which in turn prevents degradation in both the weld strength and ductility. To this end, the ability to maintain weld ductility in Ti-6Al-4V by means of applying a high energy density laser welding process presents a significant advantage over conventional arc welding for the assembly of aerospace components.  相似文献   
44.
This paper reported on the work performed to study the formation of silicon nitride and silicon carbide whiskers using the carbothermal nitridation process. A distinctive aspect of the present study lies in the use of the mechanical milling method to alter the regularity of the crystalline network of the silica sand. In order to optimise the processing parameters for the synthesis of silicon carbide, the concept of Taguchi's Design of Experiments was considered, the analysis being based on Taguchi's signal to noise ratio and variance techniques to obtain optimum combination of process parameters. Important factors influencing the formation of silicon carbide were the duration of the mechanical milling, followed by temperature, time and heating rate.  相似文献   
45.
46.
Using a representative model system, here electronic and structural properties of aromatic self‐assembled monolayers (SAMs) are described that contain an embedded, dipolar group. As polar unit, pyrimidine is used, with its orientation in the molecular backbone and, consequently, the direction of the embedded dipole moment being varied. The electronic and structural properties of these embedded‐dipole SAMs are thoroughly analyzed using a number of complementary characterization techniques combined with quantum‐mechanical modeling. It is shown that such mid‐chain‐substituted monolayers are highly interesting from both fundamental and application viewpoints, as the dipolar groups are found to induce a potential discontinuity inside the monolayer, electrostatically shifting the core‐level energies in the regions above and below the dipoles relative to one another. These SAMs also allow for tuning the substrate work function in a controlled manner independent of the docking chemistry and, most importantly, without modifying the SAM‐ambient interface.  相似文献   
47.
Model palm olein natural oil polyols (NOPs) with varying ratios of primary to secondary hydroxyls were synthesized, characterized, and evaluated in reaction kinetics study with isocyanate in formation of polyurethanes. Reaction rate constants and activation energies associated with primary and secondary hydroxyls of NOPs were quantified. The kinetic study in toluene shows that the NOP containing primary hydroxyls have three times higher reaction rate constants in noncatalyzed reaction with 4,4′‐diphenylmethane diisocyanate (4,4′‐MDI) compared to the model NOP containing only secondary hydroxyls, which is associated with higher activation energy of secondary hydroxyls. However, the difference in reaction rate constants of primary and secondary hydroxyls in NOPs diminished in the reactions catalyzed with dibutyltin dilaurate. Bulk polymerization reaction confirms the kinetics results in toluene, showing that the model NOP containing primary hydroxyls reached gel time at a faster rate. Evaluation of elastomers from bulk polymerization shows low degree of phase separation of hard and soft segments for elastomers based on the model NOPs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42955.  相似文献   
48.
The present paper is focused on exploiting Plackett–Burman design to examine the formulation effect of various chemical components content on the curing characteristics of oil palm ash (OPA)-filled acrylonitrile butadiene rubber (NBR) compound. The filled-NBR compound was prepared by conventional laboratory-sized two roll mill and cured using sulfuric system. Six independent variables such as content of zinc oxide, stearic acid, N-isopropyl-N′-phenyl-p-phenylenediamine, N-cyclohexyl-2-benzothiazole sulfenamide (CBS), sulfur, and even OPA filler were carried out to screen their significant effect on the curing characteristics of NBR compound. The scorch time, optimal cure time, minimum torque, and maximum torque were selected as a response. Results showed that the scorch time and the optimal cure time were significantly affected by CBS, whereas the minimum torque and maximum torque were significantly affected by OPA and sulfur, respectively, within the studied range. Among the chemical components under study, zinc oxide and stearic acid had the least effect on the curing properties of NBR compound. Analysis of variances for all factorial models demonstrated that the model was significant with P value <0.05 while the regularity (R 2) of all models was greater than 0.9. Lastly, the optimal chemical concentrations were predicted to acquire the optimal condition of the curing system for filled-NBR compound.  相似文献   
49.
Bulletin of Engineering Geology and the Environment - Ten potentially abrasive rock samples selected from various locations of Pakistan covering igneous, metamorphic and sedimentary rocks were...  相似文献   
50.
Journal of Applied Electrochemistry - A microbial fuel cell (MFC) is an electricity-generating device utilising electrochemically active microorganisms as biocatalysts. Using MFC as a biosensor to...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号