首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   19篇
  国内免费   5篇
工业技术   392篇
  2024年   1篇
  2023年   10篇
  2022年   16篇
  2021年   18篇
  2020年   7篇
  2019年   13篇
  2018年   14篇
  2017年   21篇
  2016年   13篇
  2015年   14篇
  2014年   10篇
  2013年   27篇
  2012年   18篇
  2011年   29篇
  2010年   19篇
  2009年   19篇
  2008年   8篇
  2007年   14篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2002年   5篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   12篇
  1994年   7篇
  1993年   7篇
  1992年   3篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   11篇
  1986年   16篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1981年   3篇
  1974年   1篇
排序方式: 共有392条查询结果,搜索用时 31 毫秒
11.
This paper deals with some improvements to rule induction algorithms in order to resolve the tie that appear in special cases during the rule generation procedure for specific training data sets. These improvements are demonstrated by experimental results on various data sets. The tie occurs in decision tree induction algorithm when the class prediction at a leaf node cannot be determined by majority voting. When there is a conflict in the leaf node, we need to find the source and the solution to the problem. In this paper, we propose to calculate the Influence factor for each attribute and an update procedure to the decision tree has been suggested to deal with the problem and provide subsequent rectification steps.  相似文献   
12.
A significant number of control loops in process plants perform poorly due to control valve stiction. Developing a method to detect valve stiction in the early phase is imperative to avoid major disruptions to the plant operations. Nonlinear principal component analysis (NLPCA), widely known for its capability in unravelling nonlinear correlations in process data, is extended in this paper to diagnose control valve stiction problems. The present work is based on distinguishing the difference between the shapes of the signals caused by stiction and other sources, and utilizes the operating data of controlled variable-controller output (pvop). The structure of pvop data used in this work is of sufficiently low dimension such that the NLPCA’s output allows the usage of simple mathematical tests in quantifying the nonlinear behavior of the loop. It is shown that if the underlying structure of pvop data is linear, the NLPCA output generally approximates to a straight line with a regression coefficient (R2) greater than 0.8, otherwise there is a possibility of presence of nonlinearity or non-Gaussianity. The presence of stiction is then detected via a new and simple NLPCA curvature index, INC. Results from simulated and real industrial case studies show that NLPCA is a very promising tool for detecting valve stiction.  相似文献   
13.
Owing to their good flexibility, biocompatibility, and capability to convert mechanical energy to electrical energy, electrospun poly(vinylidene fluoride) nanofibers (PVDFNFs) have attracted considerable attention for energy harvesting as well as wearable and self-powered electronics. However, inadequate mechanical strength and low piezoelectric output are major concerns for their practical application. Herein, we report an effective method for fabricating mechanically robust PVDFNFs with enhanced piezoresponse by incorporating phenyl-isocyanate functionalized graphene oxide (IGO) as an efficient nanofiller. The presence of IGO endowed PVDFNFs with a rough surface morphology, enhanced crystallinity, and electroactive β phase. Excitingly, enhancements of 303% and 332% in the ultimate tensile strength and modulus, respectively, were achieved for the IGO-incorporated PVDFNFs. Furthermore, the acoustic sensitivity of the composites was 63.09% higher than that of the pristine PVDFNFs. The composites had a minimum sensing force of 0.012 N, which was 20% less than the minimum sensing force of the pristine PVDFNFs. The incorporation of IGO enhanced the power generation capability of the composites by 55.23% compared with that of the pristine PVDFNFs. Thus, the as-prepared composites hold great promise for the fabrication of mechanically robust, high-performance piezoelectric composites for mechanical energy conversion applications.  相似文献   
14.
Starch isolated from maranta (Maranta arundinacea) tuber and studied for its various physicochemical characteristics. The amylose content of the starch was 24.8%. SEM showed that the granules were small indented and spherical. Maranta starch granule size has a range of 2.92–6.42 μm, (mean of 4.84 μm), length/degree of 1.20, and roundness of 0.73. Maranta starch has a gelatinization temperature of 74.8°C, peak viscosity of 498 BU, and cold paste viscosity of 669 BU. It also possessed higher freeze-thaw stability. Dynamic rheological properties of maranta starch, measured using parallel plate geometry showed increased storage modulus (G’) values, while loss modulus (G″) values were decreased with increasing frequency values (0–100 Hz). The low gelatinization temperature and high freeze thaw stability of starch indicates its potential for application as a thickener in food industries.  相似文献   
15.
Multi-crystalline silicon is an important material with advantages of low-production cost and high conversion efficiency for photovoltaic solar cells. Directional solidifi cation has become the main technique for producing mc-Si ingots for solar cell applications. The study is performed in the framework of the incompressible Navier-Stokes equation in the Boussinesq approximation with convection-conduction equations. The computations are carried out in a two dimensional (2D) axisymmetric model by the finite- element method. The influence of the Reynolds numbers, total heat flux and velocity streamline pattern on the silicon melt was simulated and analyzed for various Rayleigh numbers between 10 to 10 6 with the help of a numerical technique. The following key findings are presented in this paper. The velocity field value is increased above 0.02(m/s), heat flux value is increased to 10 4(W/m 2), when the Rayleigh number is increased above 1000. Reynolds numbers are also studied in five parallel horizontal cross-sections of the melt silicon region for various Prandtl numbers at a critical Rayleigh number of 1000. Reynolds numbers are varied between 100 and 10 5 for the Rayleigh numbers between 10 to 10 6. Meanwhile, the melt has high fluctuation when the Prandtl number is increased above 0.01. The flow is converted from laminar to turbulence at a critical Rayleigh number 1000 and Prandtl number 0.01. These results provide important information for controlling the melt fluctuations during the solidification process which are used to increase the average grain size in growing silicon multicrystals and reduce the dislocation density.  相似文献   
16.
17.
18.
A facile click chemistry approach to the functionalization of three‐dimensional hyperbranched polyurethane (HPU) to graphene oxide (GO) nanosheets is presented. HPU‐functionalized GO samples of various compositions were synthesized by reacting alkyne‐functionalized HPU with azide‐functionalized GO sheets. The morphological characterization of the HPU‐functionalized GO was performed using transmission electron microscopy and its chemical characterization was carried out using Fourier transform‐infrared spectroscopy, nuclear magnetic resonance spectroscopy, and X‐ray photoelectron spectroscopy. The graphene sheet surfaces were highly functionalized, leading to improved solubility in organic solvents, and consequently, enhanced mechanical, thermal, and thermoresponsive and photothermal shape memory properties. The strategy reported herein provides a very efficient method for regulating composite properties and producing high performance materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43358.  相似文献   
19.
Dual‐phase oxygen transport membranes are fast‐growing research interest for application in oxyfuel combustion process. One such potential candidate is CGO‐FCO (60 wt% Ce0.8Gd0.2O2?δ–40 wt% FeCo2O4) identified to provide good oxygen permeation flux with substantial stability in harsh atmosphere. Dense CGO‐FCO membranes of 1 mm thickness were fabricated by sintering dry pellets pressed from powders synthesized by one‐pot method (modified Pechini process) at 1200°C for 10 h. Microstructure analysis indicates presence of a third orthorhombic perovskite phase in the sintered composite. It was also identified that the spinel phase tends to form an oxygen deficient phase at the grain boundary of spinel and CGO phases. Surface exchange limitation of the membranes was overcome by La0.6Sr0.4Co0.2Fe0.8O3?δ (LSCF) porous layer coating over the composite. The oxygen permeation flux of the CGO‐FCO screen printed with a porous layer of 10 μm thick LSCF is 0.11 mL/cm2 per minute at 850°C with argon as sweep and air as feed gas at the rates of 50 and 250 mL/min.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号