首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2196篇
  免费   148篇
  国内免费   1篇
工业技术   2345篇
  2024年   4篇
  2023年   22篇
  2022年   19篇
  2021年   114篇
  2020年   67篇
  2019年   96篇
  2018年   87篇
  2017年   55篇
  2016年   83篇
  2015年   58篇
  2014年   123篇
  2013年   157篇
  2012年   155篇
  2011年   175篇
  2010年   128篇
  2009年   111篇
  2008年   136篇
  2007年   96篇
  2006年   95篇
  2005年   67篇
  2004年   51篇
  2003年   54篇
  2002年   51篇
  2001年   36篇
  2000年   27篇
  1999年   31篇
  1998年   53篇
  1997年   28篇
  1996年   17篇
  1995年   15篇
  1994年   17篇
  1993年   26篇
  1992年   8篇
  1991年   6篇
  1990年   7篇
  1989年   9篇
  1988年   10篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1984年   9篇
  1983年   8篇
  1982年   4篇
  1981年   2篇
  1980年   5篇
  1977年   2篇
  1976年   3篇
  1974年   2篇
  1973年   1篇
  1926年   1篇
排序方式: 共有2345条查询结果,搜索用时 15 毫秒
101.
Tool-tip frequency response function (FRF) is essential to predict chatter vibration in milling. This key input can be acquired by experimental tests, but a new test has to be performed for every tool clamped on the machine. To avoid such time-consuming procedures, receptance coupling methods have been developed, allowing coupling of the experimental dynamic response of the machine to the numerical model of the tool. Such techniques require joint rotation response, which is hard to experimentally identify. Inversion of receptance coupling technique is usually performed on additional experimental measurements to overcome this issue. This procedure amplifies measurement uncertainties, reducing accuracy of the coupling approach. In this article, a novel receptance coupling technique is presented. Machine and toolkit are connected through two distinct points, eliminating the experimental phase and computation of rotational degrees of freedom (DOFs). Only translation responses are required, acquired by a single test setup. Proposed technique was experimentally validated on different case studies.  相似文献   
102.
We present a study on the cooperative control of two autonomous surface vehicles performing a caging and transport mission on the water surface. The two vehicles, connected to each other by means of a floating flexible rope, are required to capture a floating target from a given location, and transport it to a designated position. We focus on the coordination and control strategy to meet these requirements, and on its implementation on two under-actuated vehicles. We describe a multi-layered control architecture which achieves the goal, followed by simulation studies and field experiments with the two vehicles caging and transporting a floating target on the surface of a lake.  相似文献   
103.
Two composite hydrogen storage materials based on Mg2FeH6 were investigated for the first time. The Mg2FeH6–LiBH4 composite of molar ratio 1:5 showed a hydrogen desorption capacity of 5.6 wt.% at 370 °C, and could be rehydrogenated to 3.6 wt.% with the formation of MgH2, as the material was heated to 445 °C and held at this temperature. The Mg2FeH6–LiNH2 composite of 3:10 molar ratio exhibited a hydrogen desorption capacity of 4.3 wt.% and released hydrogen at 100 °C lower then the Mg2FeH6–LiBH4 composite, but this mixture could not be rehydrogenated. Compared to neat Mg2FeH6, both composites show enhanced hydrogen storage properties in terms of desorption kinetics and capacity at these low temperatures. In particular, Mg2FeH6–LiNH2 exhibits a much lower desorption temperature than neat Mg2FeH6, but only Mg2FeH6–LiBH4 re-absorbs hydrogen.  相似文献   
104.
We investigated CH4 oxidation in the water column of Lake Kivu, a deep meromictic tropical lake with CH4-rich anoxic deep waters. Depth profiles of dissolved gases (CH4 and N2O) and a diversity of potential electron acceptors for anaerobic CH4 oxidation (NO3?, SO42?, Fe and Mn oxides) were determined during six field campaigns between June 2011 and August 2014. Denitrification measurements based on stable isotope labelling experiments were performed twice. In addition, we quantified aerobic and anaerobic CH4 oxidation, NO3? and SO42? consumption rates, with and without the presence of an inhibitor of SO42?-reducing bacteria activity. Aerobic CH4 production was also measured in parallel incubations with the addition of an inhibitor of aerobic CH4 oxidation. The maximum aerobic and anaerobic CH4 oxidation rates were estimated to be 27?±?2 and 16?±?8?μmol/L/d, respectively. We observed a difference in the relative importance of aerobic and anaerobic CH4 oxidation during the rainy and the dry season, with a greater role for aerobic oxidation during the dry season. Lower anaerobic CH4 oxidation rates were measured in presence of molybdate in half of the measurements, suggesting the occurrence of linkage between SO42? reduction and anaerobic CH4 oxidation. NO3? consumption and dissolved Mn production rates were never high enough to sustain the measured anaerobic CH4 oxidation, reinforcing the idea of a coupling between SO42? reduction and CH4 oxidation in the anoxic waters of Lake Kivu. Finally, significant rates (up to 0.37?μmol/L/d) of pelagic CH4 production were also measured in oxygenated waters.  相似文献   
105.
Recently, (Ga1-xZnx)(N1-xOx) has gained widespread attention as a comparatively high efficiency photocatalyst for visible-light-driven overall water splitting. Despite significant gains in efficiency over the past several years, a majority of the photogenerated carriers recombine within bulk powders. To improve the photocatalytic activity, we used an epitaxial casting method to synthesize single-crystalline, high surface area (Ga1-xZnx)(N1-xOx) nanotubes with ZnO compositions up to x=0.10. Individual nanotubes showed improved homogeneity over powder samples due to a well defined epitaxial interface for ZnO diffusion into GaN. Absorption measurements showed that the ZnO incorporation shifts the absorption into the visible region with a tail out to 500 nm. Gas chromatography (GC) was used to compare the solar water splitting activity of (Ga1-xZnx)(N1-xOx) nanotubes (x=0.05–0.10) with similar composition powders. Cocatalyst decorated samples were dispersed in aqueous solutions of CH3OH and AgO2CCH3 to monitor the H+ reduction and H2O oxidation half reactions, respectively. The nanotubes were found to have approximately 1.5–2 times higher photocatalytic activity than similar composition powders for the rate limiting H+ reduction half reaction. These results demonstrate that improvements in homogeneity and surface area using the nanotube geometry can enhance the photocatalytic activity of GaN:ZnO for solar water splitting.  相似文献   
106.
Ion irradiation can be used to induce partial crystallization in metallic glasses to improve their surface properties. We investigated the microstructural changes in ribbon Zr55Cu30Al10Ni5 metallic glass after 1 MeV Cu-ion irradiation at room temperature, to a fluence of 1.0 × 1016 cm−2. In contrast to a recent report by others that there was no irradiation induced crystallization in the same alloy [S. Nagata, S. Higashi, B. Tsuchiya, K. Toh, T. Shikama, K. Takahiro, K. Ozaki, K. Kawatusra, S. Yamamoto, A. Inouye, Nucl. Instr. and Meth. B 257 (2007) 420], we have observed nanocrystals in the as-irradiated samples. Two groups of nanocrystals, one with diameters of 5–10 nm and another with diameters of 50–100 nm are observed by using high resolution transmission electron microscopy. Experimentally measured planar spacings (d-values) agree with the expectations for Cu10Zr7, NiZr2 and CuZr2 phases. We further discussed the possibility to form a substitutional intermetallic (NixCu1−x)Zr2 phase.  相似文献   
107.
Gas‐phase magnetic resonance imaging (MRI) has been used to investigate heterogeneity in mass transport in a packed bed of commercial, alumina, catalyst supports. Hyperpolarized 129Xe MRI enables study of transient diffusion for microscopic porous systems using xenon chemical shift to selectively image gas within the pores, and, thence, permits study of low‐density, gas‐phase mass‐transport, such that diffusion can be studied in the Knudsen regime, and not just the molecular regime, which is the limitation with other current techniques. Knudsen‐regime diffusion is common in many industrial, catalytic processes. Significantly, larger spatial variability in mass transport rates across the packed bed was found compared to techniques using only molecular diffusion. It has thus been found that that these heterogeneities arise over length‐scales much larger than ~100 µm. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4013–4019, 2015  相似文献   
108.
109.
Polymers have been identified as replacement materials for metallic liners in composite overwrapped pressure vessels (COPVs) for future space launchers. PEEK, Nylon, and PVDF plastics formed from base powder grades have been permeability tested to determine their susceptibility to the diffusion of helium through flatwise panel cross sections. Permeability, diffusion, and solubility coefficients have been obtained for each material with PVDF and PA11 grades showing the lowest permeability coefficients and hence the best barrier properties to permeation. Crystallinity percentages and internal air void contents in the polymer samples have also been used to assess the differences in permeability between materials with an analysis of void dispersion effects given through X‐ray CT scanning techniques. The measured permeability coefficients have been used to assess the ability of all materials tested to act as a functional polymer liner in a standard COPV with final leak rates predicted based on liner thicknesses and weights. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43675.  相似文献   
110.
Polyethersulfone (PES) hollow fiber membranes were fabricated via the dry‐wet phase inversion spinning technique, aiming to produce an asymmetric, micro porous ultrafiltration hollow‐fiber specifically for hemodialysis membrane. The objective of this study is to investigate the effect of spinning conditions on the morphological and permeation properties of the fabricated membrane. Among the parameters that were studied in this work are air gap distance, dope extrusion rate, bore fluid flow rate, and the take‐up speed. The contact angle was measured to determine the hydrophilicity of the fibers. Membrane with sufficient hydrophilicity properties is desired for hemodialysis application to avoid fouling and increase its biocompatibility. The influences of the hollow fiber's morphology (i.e., diameter and wall thickness) on the performance of the membranes were evaluated by pure water flux and BSA rejection. The experimental results showed that the dope extrusion rate to bore fluid flow rate ratio should be maintained at 1:1 ratio to produce a perfectly rounded asymmetric hollow fiber membrane. Moreover, the flux of the hollow fiber spun at higher air gap distance had better flux than the one spun at lower air gap distance. Furthermore, spinning asymmetric hollow fiber membranes at high air gap distance helps to produce a thin and porous skin layer, leading to a better flux but a relatively low percentage of rejection for BSA separation. Findings from this study would serve as primary data which will be a useful guide for fabricating a high performance hemodialysis hollow fiber membrane. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43633.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号