首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
ABSTRACT

The development of spaceborne Synthetic Aperture Radar (SAR) technology declares that the golden era of SAR remote sensing in archeology is approaching; however, nowadays its methodology framework is still lacking due to the inadequate case studies validated by ground-truths. In this study, we investigated the crop marks using multi-temporal Cosmo-SkyMed data acquired in 2013 by applying a two-step decision-tree classifier in conjunction with a spatial analysis in an area of archeological interest nearby the archeological site of Han-Wei capital city (1900–1500 BP), in Luoyang, China. The time-series backscattering anomalies related to the wheat growth cycle were identified and then further validated in two zones by geophysical investigations (Ground Penetration Radar and electrical measurements) and in a third zone by archeological excavations made after the SAR data acquisition. This study provides a new approach for the relic detection, shallowly buried and covered by the crop vegetation, by temporal crop marks on spaceborne SAR images. We also emphasize the necessity to establish a satellite-to-ground methodology framework for the promotion of remote-sensing technology in archeology.  相似文献   

2.
Three-date ERS-1 SAR data acquired on August 24, September 28 and November 2, 1995, was used to classify rice crop in a predominant rice growing region of West Bengal. India, Artificial neural network, maximum likelihood, decision rute and K-Means clustering classifiers were used. Classification accuracy was evaluated from the error matrix of same set of training and validating pixels. Rice classification accuracy improved significantly using neural network classifier. The decision rule based classifier performed equally good for most of the sites, indicating the feasibility of deriving a common rule based algorithm for large area application. Law aecuracy was observed for maximum likelihood classifier.  相似文献   

3.
提出了一种新的基于特征选择自适应决策树的层次分类算法,用于合成孔径雷达(synthetic apertureradar,SAR)图像的分类。采用Joint Boosting算法选择出最适用于各类的特征组合,并自适应地搜索构造出一个由两类分类器构成的层次分类器,利用特征选择结果和自适应决策树进行了SAR图像的学习和推理,实现了自动分类,在国内首批极化干涉SAR数据上的实验证明了本算法的有效性。  相似文献   

4.
ABSTRACT

Globally, drought constitutes a serious threat to food and water security. The complexity and multivariate nature of drought challenges its assessment, especially at local scales. The study aimed to assess spatiotemporal patterns of crop condition and drought impact at the spatial scale of field management units with a combined use of time-series from optical (Landsat, MODIS, Sentinel-2) and Synthetic Aperture Radar (SAR) (Sentinel 1) data. Several indicators were derived such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), Land Surface Temperature (LST), Tasseled cap indices and Sentinel-1 based backscattering intensity and relative surface moisture. We used logistic regression to evaluate the drought-induced variability of remotely sensed parameters estimated for different phases of crop growth. The parameters with the highest prediction rate were further used to estimate thresholds for drought/non-drought classification. The models were evaluated using the area under the receiver operating characteristic curve and validated with in-situ data. The results revealed that not all remotely sensed variables respond in the same manner to drought conditions. Growing season maximum NDVI and NDMI (70–75%) and SAR derived metrics (60%) reflect specifically the impact of agricultural drought. These metrics also depict stress affected areas with a larger spatial extent. LST was a useful indicator of crop condition especially for maize and sunflower with prediction rates of 86% and 71%, respectively. The developed approach can be further used to assess crop condition and to support decision-making in areas which are more susceptible and vulnerable to drought.  相似文献   

5.
In this paper, a new snow wetness estimation model is proposed for full-polarimetric Synthetic Aperture Radar (SAR) data. Surface and volume are the dominant scattering components in wet-snow conditions. The generalized four component polarimetric decomposition with unitary transformation (G4U) based generalized surface and volume parameters are utilized to invert snow surface and volume dielectric constants using the Bragg coefficients and Fresnel transmission coefficients respectively. The snow surface and volume wetness are then estimated using an empirical relationship. The effective snow wetness is derived from the weighted averaged surface and volume snow wetness. The weights are derived from the normalized surface and volume scattering powers obtained from the generalized full-polarimetric SAR decomposition method. Six Radarsat-2 fine resolution full-polarimetric datasets acquired over Himachal Pradesh, India along with the near-real time in situ measurements were used to validate the proposed model. The snow wetness derived from the SAR data by the proposed model with in situ measurements indicated that the absolute error at 95% confidence interval is 1.3% by volume.  相似文献   

6.
The Canadian satellite RADARSAT launched in November 1995 acquires C-band HH polarisation Synthetic Aperture Radar (SAR) data in various incident angles and spatial resolutions. In this study, the Standard Beam S7 SAR data with 45°–49° incidence angle has been used to discriminate rice and potato crops grown in the Gangetic plains of West Bengal state. Four-date data acquired in the 24-day repeat cycle between January 2 and March 15, 1997 was used to study the temporal backscatter characteristics of these crops in relation to the growth stages. Two, three and four-date data were used to classify the crops. The results show that the backscatter was the lowest during puddling of rice fields and increased as the crop growth progressed. The backscatter during this period changed from −18 dB to −8 dB. This temporal behaviour was similar to that observed in case of ERS-SAR data. The classification accuracy of rice areas was 94% using four-date data. Two-date data, one corresponding to pre-field preparation and the other corresponding to transplantation stage, resulted in 92% accuracy. The last observation is of particular interest as one may estimate the crop area as early as within 20–30 days of transplantation. Such an early estimate is not feasible using optical remote sensing data or ERS-SAR data. The backscatter of potato crop varied from −9 dB to −6 dB during the growth phase and showed large variations during early vegetative stage. Two-date data, one acquired during 40–45 days of planting and another at maturing stage, resulted in 93% classification accuracy for potato. All other combinations of two-date data resulted in less than 90% classification accuracy for potato.  相似文献   

7.
Accurate and timely information on the distribution of crop types is vital to agricultural management, ecosystem services valuation and food security assessment. Synthetic Aperture Radar (SAR) systems have become increasingly popular in the field of crop monitoring and classification. However, the potential of time-series polarimetric SAR data has not been explored extensively, with several open scientific questions (e.g. the optimal combination of image dates for crop classification) that need to be answered. In this research, the usefulness of full year (both 2011 and 2014) L-band fully-polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data in crop classification was fully investigated over an agricultural region with a heterogeneous distribution of crop categories. In total, 11 crop classes including tree crops (almond and walnut), forage crops (grass, alfalfa, hay, and clover), a spring crop (winter wheat), and summer crops (corn, sunflower, tomato, and pepper), were discriminated using the Random Forest (RF) algorithm. The SAR input variables included raw linear polarization channels as well as polarimetric parameters derived from Cloude-Pottier (CP) and Freeman-Durden (FD) decompositions. Results showed clearly that the polarimetric parameters yielded much higher classification accuracies than linear polarizations. The combined use of all variables (linear polarizations and polarimetric parameters) produced the maximum overall accuracy of 90.50 % and 84.93 % for 2011 and 2014, respectively, with a significant increase of approximately 8 percentage points compared with linear polarizations alone. The variable importance provided by the RF illustrated that the polarimetric parameters had a far greater influence than linear polarizations, with the CP parameters being much more important than the FD parameters. The most important acquisitions were the images dated during the peak biomass stage (July and August) when the differences in structural characteristics between most crops were the largest. At the same time, the images in spring (April and May) and autumn (October) also contributed to the crop classification since they respectively provided unique information for discriminating fruit crops (almond and walnut) as well as summer crops (corn, sunflower, and tomato). As a result, the combined use of only four acquisitions (dated May, July, August, and October for 2011 and April, June, August, and October for 2014) was adequate to achieve a nearly-optimal overall accuracy. In light of the promising classification accuracies demonstrated in this research, it becomes increasingly viable to provide accurate and up-to-date crops inventories over large areas based solely on multitemporal polarimetric SAR.  相似文献   

8.
The accuracy of cotton crop classification using satellite data has been assessed with respect to a detailed land cover map prepared by field survey. The effect of spatial resolution on classification accuracy was studied using LISS-I (spatial resolution 72.6 m) and LISS-II data (spatial resolution 36.25 m) of the Indian remote sensing satellite IRS-1B. The performances of the maximum likelihood and the minimum distance to mean as classifiers have also been assessed. LISS-II data have been found to give a higher classification accuracy. The estimate of cotton acreage using LISS-II data was closer to that obtained from the base map. The maximum likelihood classifier (MXL) and the minimum distance to mean (MDM) classifier performed equally well.  相似文献   

9.
Land use classification requires a significant amount of labeled data, which may be difficult and time consuming to obtain. On the other hand, without a sufficient number of training samples, conventional classifiers are unable to produce satisfactory classification results. This paper aims to overcome this issue by proposing a new model, TrCbrBoost, which uses old domain data to successfully train a classifier for mapping the land use types of target domain when new labeled data are unavailable. TrCbrBoost adopts a fuzzy CBR (Case Based Reasoning) model to estimate the land use probabilities for the target (new) domain, which are subsequently used to estimate the classifier performance. Source (old) domain samples are used to train the classifiers of a revised TrAdaBoost algorithm in which the weight of each sample is adjusted according to the classifier’s performance. This method is tested using time-series SPOT images for land use classification. Our experimental results indicate that TrCbrBoost is more effective than traditional classification models, provided that sufficient amount of old domain data is available. Under these conditions, the proposed method is 9.19% more accurate.  相似文献   

10.
Satellite data holds considerable potential as a source of information on rice crop growth which can be used to inform agronomy. However, given the typical field sizes in many rice-growing countries such as China, data from coarse spatial resolution satellite systems such as the Moderate Resolution Imaging Spectroradiometer (MODIS) are inadequate for resolving crop growth variability at the field scale. Nevertheless, systems such as MODIS do provide images with sufficient frequency to be able to capture the detail of rice crop growth trajectories throughout a growing season. In order to generate high spatial and temporal resolution data suitable for mapping rice crop phenology, this study fused MODIS data with lower frequency, higher spatial resolution Landsat data. An overall workflow was developed which began with image preprocessing, calculation of multi-temporal normalized difference vegetation index (NDVI) images, and spatiotemporal fusion of data from the two sensors. The Spatial and Temporal Adaptive Reflectance Fusion Model was used to effectively downscale the MODIS data to deliver a time-series of 30 m spatial resolution NDVI data at 8-day intervals throughout the rice-growing season. Zonal statistical analysis was used to extract NDVI time-series for individual fields and signal filtering was applied to the time-series to generate rice phenology curves. The downscaled MODIS NDVI products were able to characterize the development of paddy rice at fine spatial and temporal resolutions, across wide spatial extents over multiple growing seasons. These data permitted the extraction of key crop seasonality parameters that quantified inter-annual growth variability for a whole agricultural region and enabled mapping of the variability in crop performance between and within fields. Hence, this approach can provide rice crop growth data that is suitable for informing agronomic policy and practice across a wide range of scales.  相似文献   

11.
结合凝聚层次聚类的极化SAR海冰分割   总被引:1,自引:1,他引:0  
于波  孟俊敏  张晰  纪永刚 《遥感学报》2013,17(4):887-904
针对全极化高分辨率合成孔径雷达(SAR)多噪声的特点,选择合适的海冰SAR影像纹理特征量,并基于凝聚层次聚类的思想,提出一种全极化SAR海冰分割方法。将该方法的结果与K-Means、迭代自组织聚类(ISODATA)和模糊C均值算法等经典分割方法相比较,发现该方法的碎斑明显减少,且分割结果较为准确,证明了该方法的有效性。  相似文献   

12.
PCA、ICA和Gabor小波决策融合的SAR目标识别   总被引:2,自引:0,他引:2  
宦若虹  张平  潘赟 《遥感学报》2012,16(2):262-274
提出了一种基于主成分分析(PCA)、独立分量分析(ICA)和Gabor小波决策融合的合成孔径雷达SAR(Synthetic Aperture Radar)图像目标识别方法。首先用PCA、ICA和Gabor小波变换分别对SAR目标图像提取特征向量,再用3个支持向量机分类器分别对3种方法提取得到的特征向量分类,通过基于等级的决策融合方法对3个支持向量机分类器的输出进行决策融合,得到最终类别决策结果。采用MSTAR数据库中3个目标进行识别实验,实验结果表明,PCA、ICA和Gabor小波决策融合后得到的识别率高于单独用其中任何一个特征得到的识别率。因此,该方法可提高目标的正确识别率,是一种有效的SAR图像目标识别方法。  相似文献   

13.
张广伟  余海坤 《现代测绘》2006,29(3):23-24,30
提出了一种探测多通道SAR影像中道路的新方案。首先阐述了从边缘探测器中建构线状探测器。然后,介绍了应用到SAR影像中的多参数统计假设检验方法。利用传统的亮线提取过程对初期结果进行了矢量化。实验表明:该方法应用到全极化SAR影像中的道路的提取中效果较好。  相似文献   

14.
Site-specific information of crop types is required for many agro-environmental assessments. The study investigated the potential of support vector machines (SVMs) in discriminating various crop types in a complex cropping system in the Phoenix Active Management Area. We applied SVMs to Landsat time-series Normalized Difference Vegetation Index (NDVI) data using training datasets selected by two different approaches: stratified random approach and intelligent selection approach using local knowledge. The SVM models effectively classified nine major crop types with overall accuracies of >86% for both training datasets. Our results showed that the intelligent selection approach was able to reduce the training set size and achieved higher overall classification accuracy than the stratified random approach. The intelligent selection approach is particularly useful when the availability of reference data is limited and unbalanced among different classes. The study demonstrated the potential of utilizing multi-temporal Landsat imagery to systematically monitor crop types and cropping patterns over time in arid and semi-arid regions.  相似文献   

15.
Due to its ability to penetrate the cloud, Synthetic Aperture Radar (SAR) has been a great resource for crop mapping. Previous research has verified the applicability of SAR imagery in object-oriented crop classification, however, speckle noise limits the generation of optimal segmentation. This paper proposed an innovative SAR-based maize mapping method supported by optical image, Gaofen-1 PMS, based segmentation, named as parcel-based SAR classification assisted by optical imagery-based segmentation (os-PSC). Polarimetric decomposition was applied to extract polarimetric parameters from multi-temporal RADARSAT-2 data. One Gaofen-1 image was then used for parcel extraction, which was the basic unit for SAR image analysis. The final step was a multi-step classification for final maize mapping including: the potential maize mask extraction, pure/mixed maize parcel division and an integrated maize map production. Results showed that the overall accuracy of the os-PSC method was 89.1%, higher than those of pixel-level classification and SAR-based segmentation methods. The comparison between optical- and SAR-based segmentation demonstrated that optical-based segmentation would be better at representing maize field boundaries than the SAR-based segmentation. Moreover, the parcel- and pixel-level integrated classification will be suitable for many agricultural systems with small landownership where inter-cropping is common. Through integrating advantages of the SAR and optical data, os-PSC shows promising potentials for crop mapping.  相似文献   

16.
利用SVM的全极化、双极化与单极化SAR图像分类性能的比较   总被引:1,自引:0,他引:1  
支持向量机(SVM)以其在小训练样本时良好的分类性能,目前已广泛应用于多个领域.本文在极化SAR图像特征提取基础上,将SVM应用于极化SAR图像分类,定性和定量地比较了全极化、双极化和单极化SAR图像的分类性能,分析了不同的极化组合对分类结果的影响,并根据地物极化散射特性分析了分类精度差异的成因.实测极化SAR数据的实验结果表明,全极化数据能获得最好的分类性能,双极化次之,单极化最低,且在某些情况下,双极化与全极化分类性能接近.  相似文献   

17.
For some special case, Huynen's decomposition cannot be used to extract a desired target from an average Kennaugh matrix. In this paper, the authors modify Huynen's method for overcoming its disadvantage, based on a simple transform of a Kennaugh matrix. Using an example, the effectiveness of the modified method is validated.  相似文献   

18.
Automatic land cover update was an effective means to obtain objective and timely land cover maps without human disturbance. This study investigated the efficacy of multi-temporal remote sensing data and advanced non-parametric classifier on improving the classification accuracy of the automatic land cover update approach integrating iterative training sample selection and Markov Random Fields model when the historical remote sensing data were unavailable. The results indicated that two-temporal remote sensing data acquired in one crop growth season could significantly improve the classification accuracy of the automatic land cover update approach by approximately 3–4%. However, the support vector machine (SVM) classifier was not suitable to be integrated in the automatic land cover update approach, because the huge initially selected training samples made the training of the SVM classifier unrealizable.  相似文献   

19.
The aim of this paper is to assess the accuracy of an object-oriented classification of polarimetric Synthetic Aperture Radar (PolSAR) data to map and monitor crops using 19 RADARSAT-2 fine beam polarimetric (FQ) images of an agricultural area in North-eastern Ontario, Canada. Polarimetric images and field data were acquired during the 2011 and 2012 growing seasons. The classification and field data collection focused on the main crop types grown in the region, which include: wheat, oat, soybean, canola and forage. The polarimetric parameters were extracted with PolSAR analysis using both the Cloude–Pottier and Freeman–Durden decompositions. The object-oriented classification, with a single date of PolSAR data, was able to classify all five crop types with an accuracy of 95% and Kappa of 0.93; a 6% improvement in comparison with linear-polarization only classification. However, the time of acquisition is crucial. The larger biomass crops of canola and soybean were most accurately mapped, whereas the identification of oat and wheat were more variable. The multi-temporal data using the Cloude–Pottier decomposition parameters provided the best classification accuracy compared to the linear polarizations and the Freeman–Durden decomposition parameters. In general, the object-oriented classifications were able to accurately map crop types by reducing the noise inherent in the SAR data. Furthermore, using the crop classification maps we were able to monitor crop growth stage based on a trend analysis of the radar response. Based on field data from canola crops, there was a strong relationship between the phenological growth stage based on the BBCH scale, and the HV backscatter and entropy.  相似文献   

20.
统计数据总量约束下全局优化阈值的冬小麦分布制图   总被引:6,自引:0,他引:6  
大范围、长时间和高精度农作物空间分布基础农业科学数据的准确获取对资源、环境、生态、气候变化和国家粮食安全等问题研究具有重要现实意义和科学意义。本文针对传统阈值法农作物识别过程中阈值设置存在灵巧性差和自动化程度低等弱点,以中国粮食主产区黄淮海平原内河北省衡水市景县为典型实验区,首次将全局优化算法应用于阈值模型中阈值优化选取,开展了利用全局优化算法改进基于阈值检测的农作物分布制图方法创新研究。以冬小麦为研究对象,国产高分一号(GF-1)为主要遥感数据源,在作物面积统计数据为总量控制参考标准和全局参数优化的复合型混合演化算法SCE-UA (Shuffled Complex Evolution-University of Arizona)支持下,提出利用时序NDVI数据开展阈值模型阈值参数自动优化的冬小麦空间分布制图方法。最终,获得实验区冬小麦阈值模型最优参数,并利用优化后的阈值参数对冬小麦空间分布进行提取。通过地面验证表明,利用本研究所提方法获取的冬小麦识别结果分类精度均达到较高水平。其中冬小麦识别结果总量精度达到了99.99%,证明本研究所提阈值模型参数优化方法冬小麦提取分类结果总量控制效果良好;同时,与传统的阈值法、最大似然和支持向量机等分类方法相比,本研究所提阈值模型参数优化法区域冬小麦作物分类总体精度和Kappa系数分别都有所提高,其中,总体精度分别提高4.55%、2.43%和0.15%,Kappa系数分别提高0.12、0.06和0.01,这体现出SCE-UA全局优化算法对提高阈值模型冬小麦空间分布识别精度具有一定优势。以上研究结果证明了利用本研究所提基于作物面积统计数据总量控制以及SCE-UA全局优化算法支持下阈值模型参数优化作物分布制图方法的有效性和可行性,可获得高精度冬小麦作物空间分布制图结果,这对提高中国冬小麦空间分布制图精度和自动化水平具有一定意义,也可为农作物面积农业统计数据降尺度恢复重建和大范围区域作物空间分布制图研究提供一定技术参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号