首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
连续强沙尘天气的发展和时空演变机制的数值模拟   总被引:10,自引:8,他引:2  
2002年4月6-8日由蒙古气旋和地面冷锋引发了一次连续沙尘暴天气,特别是内蒙古中东部、华北和东北大部分地区沙尘持续影响时间较长,强度大。利用与非静力平衡中尺度气象模式完全耦合的区域沙尘数值模式,模拟研究这次强沙尘天气过程中沙尘浓度的空间分布结构和时间演变趋势。模拟结果与地面天气观测、定点沙尘颗粒物浓度观测资料进行对比和检验。结果表明:沙尘数值模式较逼真地刻画出这次连续强沙尘天气的形成、发展、移动、减弱的全过程;客观地揭示了强沙尘天气过程的垂直分布结构和沙尘浓度的时空演变机制;模拟的强沙尘以及输送至下游的浮尘天气范围、强度和出现时间与实况基本一致,特别是对我国华北和东北沙尘的模拟相当成功。高时空分辨率的数值模式对研究沙尘的发生、发展机制和预报预警有重要意义。  相似文献   

2.
起沙系数对沙尘数值模拟影响的研究   总被引:2,自引:0,他引:2  
通过综合考虑地表条件,如土地利用、土壤类型、植被覆盖与土壤湿度等,定义了起沙系数,用于改进沙尘数值预报模式中的起沙通量,为沙尘数值预报模式提供客观准确的地面起沙条件,提高了沙尘天气分布预报的准确率\.起沙风系数的引入能够对沙尘数值模拟产生较大的影响,若起沙系数中应用较高精度的土壤水分资料与土壤类型,将能更准确地反映起沙系数的作用。  相似文献   

3.
使用GRAPES_SDM沙尘暴数值模式,对2011年4月28-30日中国北方强沙尘暴天气进行分析,讨论高空急流在此次过程中对沙尘传输的影响,得出以下结论:(1)GRAPES_SDM沙尘暴模式较好地模拟了此次沙尘暴过程的范围和强沙尘暴中心,整体模拟效果较好;(2)沙尘天气发生时间及移动路径与200 hPa高空急流的加强、移动发展有很好的对应关系;(3)高空强纬向风速的加强能够促使中低层形成垂直环流圈,其下沉支流使高空动量有效下传到近地面,进而在地面形成大风及扬沙和沙尘暴天气,强沙尘暴中心位于此垂直环流圈的下沉支;(4)等熵位涡与高空急流及地面沙尘浓度分布演变有很好的对应关系,等熵位涡位于高空急流北侧,地面沙尘浓度中心位于高空急流出口区、等熵位涡中心西南侧、等值线密集带;高层高值位涡区向下延伸的路径与高空急流北侧纬向风速等值线密集带有非常好的对应关系。本文还通过对高空急流轴线动力、热力结构垂直剖面的分析,探讨了高空急流对大范围沙尘天气影响的可能机制。  相似文献   

4.
段海霞  郭铌  霍文  秦贺  马玉芬 《中国沙漠》2014,34(6):1617-1623
GRAPES-SDM沙尘模式和卫星遥感监测是目前沙尘暴监测预报业务中重要的工具.本文使用天气学检验方法,对中国气象局兰州干旱气象研究所目前使用的GRAPES-SDM沙尘模式2012年春季沙尘天气预报情况以及FY-2D卫星遥感产品沙尘指数IDDI的监测效果进行检验评估.结果表明:沙尘模式在西北沙尘暴预报业务中具有很好的预报参考价值,卫星遥感沙尘指数也具有较好的监测效果,但两者均存在一定的问题.沙尘模式对大范围沙尘暴过程有较好的预报能力,但对沙尘强度预报偏强;卫星遥感沙尘指数虽然不能定性地表示沙尘强度,但是在一定程度上能够反映沙尘强度的变化,不过反映沙尘强度的数值及其分布区间还有待于进一步完善.卫星遥感在南疆盆地常会将大片深厚的沙尘气溶胶区域误判为云区,造成对沙尘天气特别是沙尘暴天气未能识别的现象,另外IDDI指数不能用于夜间沙尘监测.  相似文献   

5.
利用锡林浩特国家气候观象台2011年4-5月近地层微气象、地表辐射和湍流通量观测数据,对比分析了内蒙古典型半干旱草原下垫面在晴天、扬沙和沙尘暴天气下各气象要素、地表辐射分量和能量平衡的变化特征。对于半干旱草原区,地面风速越大沙尘天气越强;沙尘过程开始前地面空气较暖,开始后地面空气转为相对较冷的状态;沙尘气溶胶含量越高,5 cm地温日变化趋势越弱,在沙尘过程中5 cm地温值越小。沙尘气溶胶含量越高,太阳总辐射越弱,大气长波辐射越强;地表反射辐射与总辐射有相同的日变化特征;沙尘气溶胶白天使净辐射值减小,夜间使净辐射值增大。沙尘天气直接辐射衰减非常明显,而且散射辐射在总辐射中占很大的比重。沙尘气溶胶对紫外辐射的削弱很强,并且沙尘含量越高,对紫外辐射的削弱越强。沙尘气溶胶的辐射强迫作用对地表能量平衡产生影响,使向上的感热和潜热输送减弱,使向上的土壤热通量增强或向下的土壤热通量减弱。  相似文献   

6.
利用GRAPES_SDM沙尘暴模式及GRAPES_3DVAR系统,设计了4种试验,分别为没有同化的CTRL控制试验、仅同化探空资料的noPM试验、同时同化探空和PM10的PM试验和同时同化探空和AMSU辐射率资料的NOAA试验,对2011年4月28日-30日发生在中国北方地区的一次大范围沙尘暴过程进行了分析和对比模拟试验。结果发现:仅同化探空资料时,模式能够反映出沙尘天气系统的发展演变情况,但沙尘天气分布范围和强度的模拟效果没有明显改进;初始场中考虑了PM10沙尘浓度的分布后在很大程度上能够改善GRAPES_SDM沙尘暴模式对沙尘分布范围和强度的模拟效果;同化AMSU辐射率资料后,模式对500 hPa环流形势和200 hPa高空急流均有较好的模拟效果,从而模式对沙尘分布范围的模拟能力也有较好的改善,但对沙尘天气强度的模拟略有增强。这不仅说明PM10和ASMU辐射率资料的使用对于提高沙尘暴过程模拟效果是可行的、必要的,而且也为这两种资料用于沙尘暴预报奠定了一定基础。  相似文献   

7.
使用天气学检验方法,对中国气象局兰州干旱气象研究所目前使用的GRAPES-SDM沙尘暴预报业务模式在2008-2011年春季沙尘天气预报情况进行检验评估。结果表明:①自2008年以来,GRAPES-SDM沙尘暴模式对中国北方区域沙尘天气的模拟预报能力较好,TS评分和预报效率保持较高的水平;②模式对内蒙古地区、河套地区及甘肃河西地区的预报效果最好,但常有空报或预报沙尘强度偏强的现象;模式能预报出南疆盆地的沙尘天气,但常有预报范围偏小、强度偏弱的现象;对青海地区的沙尘天气常有漏报现象;③模式对沙尘暴频发地区的预报效果较好,对沙尘天气偶发地区容易漏报,模式对新疆东部、内蒙古中西部地区空报较多;④模式对大范围沙尘天气过程的预报能力较好,对零星沙尘天气预报能力较差。通过检验,我们还提出了改进和完善GRAPES-SDM沙尘暴预报系统的一些建议。  相似文献   

8.
利用2009年7月4日~29日塔中野外试验观测数据,基于MARTICORENA和SHAO提出的2种起沙模式参数化方案,初步探讨塔中地区不同沙尘天气临界起沙风速,所得结论如下:(1)非沙尘天气,沙尘撞击颗粒数≤ 10 000;扬沙天气,10 001 ≤沙尘撞击颗粒数≤ 20 000;沙尘暴天气,沙尘撞击颗粒数≥ 20 001。(2)基于MARTICORENA起沙参数化方案,临界起沙风速的平均值为4.88 m·s-1,基于SHAO起沙参数化方案,临界起沙风速的平均值为6.24 m·s-1,临界起沙风速在非沙尘天气最大,在沙尘暴天气最小。(3)在观测期间沙尘水平通量为732.9 kg·m-1,其中非沙尘天气125.2 kg·m-1,扬沙天气80.9 kg·m-1,沙尘暴天气526.8 kg·m-1,SHAO起沙参数化方案适合估算总沙尘水平通量以及非沙尘和扬沙天气的沙尘水平通量,MARTICORENA起沙参数化方案适合估算沙尘暴天气沙尘水平通量。  相似文献   

9.
河西走廊是中国西北路径冷空气的必经之地,其狭管地形加之丰富的沙尘源地,使其成为中国沙尘暴多发区;民勤位于走廊中段,地处巴丹吉林和腾格里两大沙漠的接壤地带,正好位于雅布赖山和龙首山形成的山口下游方。河西走廊加上民勤周边这种双狭管的特殊地形,使得民勤又成为河西走廊沙尘暴的多发区以及中国的生态环境极度脆弱区。本文以2010年4月24日河西走廊一次特强沙尘暴(部分时段能见度为0,达到了黑风标准)为例,利用GRAPES_SDM沙尘模式对这次沙尘暴进行了数值模拟,并重点对民勤周边山地采取改变高度和范围等方式,模拟研究了地形对过境民勤的风速、地面起沙通量、沙尘浓度以及沙尘输送的影响。结果表明:(1)民勤周边地形高度降低的情况下,地面风速减弱,携沙气流遇到地形阻挡,沿着坡地爬升,部分沙尘可以翻越地形到背风坡,此时的地形特征将减弱沙尘扩散强度;(2)民勤周边地形高度增高,风速小于地形不变时的风速,气流发生明显的绕流,改变沙尘扩散方向;(3)改变民勤周边山体地形位置,狭管效应减弱,地面风速明显减小,沙尘影响范围较控制试验向南及东南方向扩展;(4)河西走廊南部祁连山高度改变对沙尘的影响程度大于民勤北部雅布赖山的改变,这与祁连山的山体面积和高度明显大于雅布赖山有关,说明河西走廊“狭管”地形是民勤沙尘暴之所以多发的重要原因,民勤周边的小型“狭管”地形又使得民勤成为走廊中沙尘暴最为严重的区域。(5)地形改变将减小地表起沙量,从而减小沙尘浓度,也即减弱沙尘暴的发生发展。  相似文献   

10.
陕西一次强沙尘暴过程诊断与分析   总被引:5,自引:3,他引:2  
2006年陕西共发生沙尘天气13次,其中4月11日的沙尘天气最为严重,危害最大,这也是陕西近10 a来最为严重的一次沙尘暴天气过程。这次沙尘天气带来一系列的天气演变过程,它持续时间虽然只有8~9 h,但覆盖面积大,影响范围广,全省70%~80%左右的区域都受到了影响。运用FY-2卫星红外云图及MICAPS2.0模式中的数值预报进行分析,发现红外云图呈现出异常状态,高低空形势配合较好,气压梯度、温度梯度密集,狂风突起等状况,试图揭示与解读沙尘天气在发生过程中某些气象因子的特征及其对沙尘天气的影响机理,为今后预报沙尘暴强度和发生区域提供一定的理论依据。  相似文献   

11.
内蒙古中西部地面感热通量影响沙尘暴的观测分析   总被引:9,自引:7,他引:2  
利用内蒙古中西部不同地表类型的16个测站2005—2006年3—5月逐小时地面观测资料和逐日沙尘暴资料,计算了地面感热通量、地面位温并分析它们与沙尘暴的关系,结果发现:在内蒙古中西部春季地面感热通量表现为净加热,且沙尘暴发生次数多的年份净地面感热加热强度反而较小。在沙尘暴发生前,沙漠区和高平原区地面感热通量达到最大,而丘陵和平原地区反而开始降低。对于沙尘暴发生前12 h累积的地面感热加热强度及导致的地面位温上升幅度,高平原和丘陵平原区要强于沙漠区。但相对而言,沙漠和高平原地区地面感热加热影响沙尘暴的“效率”更高。  相似文献   

12.
沙尘天气是东亚地区常见的灾害性天气之一,强沙尘天气的发生不仅导致建筑物倒塌、人畜伤亡、植被破坏,还会导致火灾、空气污染等环境问题,对人体健康、社会经济活动及其全球沙尘循环产生重要影响。然而从东亚地区沙尘天气在长时间序列区域特征角度上系统分析的研究较少。基于此,本文利用1981—2019年东亚地区697个地面气象站点沙尘数据,分析了其区域时空分布特征。结果表明:空间上,东亚沙尘天气集中在位于内陆干旱区的蒙古国和中国西北地区,其中弱沙尘天气集中在中国北方地区,而强沙尘天气则集中在蒙古国。月变化上,东亚沙尘天气集中在春季(3—5月份),在相对低纬度的中国青藏高原北麓沙尘天气3月份最多,位于中纬度的中国北方大部分地区4月份最多,而较高纬度的哈萨克斯坦东部和蒙古国5月份最多。年际变化上,40a间东亚沙尘呈减少趋势,尤其是在2000年之后多项生态工程的有效实施下中国北方大部分区域沙尘天气显著减少,但近几年内蒙古中西部地区强沙尘天气呈增长趋势;在生态环境较脆弱的蒙古国和塔克拉玛干沙漠等区域弱沙尘天气和强沙尘天气均呈增长趋势。本研究对准确地掌握东亚沙尘分布特征和防范沙尘灾害具有重要意义。  相似文献   

13.
蒙古气旋天气过程中的沙尘传输特征   总被引:6,自引:5,他引:1  
基于沙尘数值预报模式针对不同区域地面起沙的敏感性试验结果,分析讨论了蒙古气旋沙尘暴过程中沙尘传输的特点及形成原因。结果表明:蒙古气旋沙尘暴过程的沙尘传输表现为:沙源区纬度越高,沙尘向东传输越强,纬度越低,向南传输越强;同时,高度越高,沙尘向东传输越强,高度越低,向南传输越强。其形成原因是萨彦岭山地背风坡效应、青藏高原东北侧地形强迫绕流等自然地理因素和蒙古气旋的动力、热力结构共同造成的,具有一定程度的普遍性。  相似文献   

14.
王澄海  胡菊  靳双龙 《中国沙漠》2013,33(1):205-213
通过对2009年4月22日至25日发生在甘肃、宁夏、内蒙古的一次沙尘暴观测和模拟回报试验,分析了沙尘暴过程中水汽及水热的变化特征,检验了天气研究和预报模式(WRF)对沙尘暴过程的模拟能力。结果表明,WRF能较好地再现出沙尘暴过程中水汽变化的基本特征。沙尘暴发生前,地面感热明显增加,大气中水汽明显减少。在沙尘暴过程中,扩散作用和气溶胶的凝结作用影响水汽的变化,而水汽的垂直方向变化较小;高空云水和云冰含量异常偏小,低层大气的温度和水汽含量下降。热力诊断的结果表明,沙尘暴过程中,由于水汽的相变,在600~800 hPa高度处,水汽凝结产生的视热源的加热率高达6 ℃·d-1,表明非绝热加热作用在沙尘暴的维持和发展起着重要的作用。  相似文献   

15.
为了解沙尘传输过程中气溶胶粒子光学性质的变化,利用2001-2008年中国北方4个站点沙尘期间的数据资料,比较分析了沙尘源区与下游地区气溶胶光学特性的差异。结果表明,沙尘期间大量粗粒子对总消光具有强烈贡献,沙尘源区和下游地区粗粒子消光分别占总消光的85.2%和65.8%。沙尘期间沙尘源区与下游地区均表现出较高的气溶胶光学厚度;而源区的Angstrom波长指数明显低于下游地区,当沙尘暴出现时会下降到零甚至负值。沙尘源区与下游区气溶胶体积尺度谱以粗模态峰为主模态峰。在波长440~1 020 nm时,气溶胶单次散射反照率随波长增大而增大,源区与下游地区的单次散射反照率分别达到0.95和0.92。沙尘源区气溶胶的不对称因子大于下游地区,4个波段的平均不对称因子分别为0.73和0.70。  相似文献   

16.
利用观测资料和NCEP再分析资料,对冷锋型和蒙古气旋型两类沙尘天气过程的典型个例进行对比分析。结果表明:斜压强迫在两类过程中均较为显著,冷锋型沙尘天气过程中,随高度降低高空槽明显加深;蒙古气旋型则在对流层低层(850 hPa)、中层(500 hPa)形成切断低压。冷锋型沙尘天气过程高空锋区位置较蒙古气旋型偏南,且南压更为明显;冷锋型沙尘天气过程沙尘天气区位置也较蒙古气旋型偏南,且主要向东南方向扩展。冷锋型地面高、低压强度对比明显大于蒙古气旋型,且地面风速与能见度的反相关性高于蒙古气旋型,锋后降温也较蒙古气旋型显著。冷锋型锋前上升运动中心位于700 hPa,锋后下沉运动中心位于600 hPa。蒙古气旋型气旋中心及其附近300 hPa以下均有强的上升运动。冷锋型锋面附近正涡度随高度增高而增大,蒙古气旋型气旋中心及其附近为正涡度。最后给出了冷锋型和蒙古气旋型沙尘天气过程的天气学概念模型。  相似文献   

17.
中国北方一次强沙尘暴爆发的数值模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 利用意大利国际理论物理研究中心发展的耦合了沙尘模块的区域气候模式(RegCM3)对发生在中国北方2006年4月9~11日期间的一次强沙尘暴的爆发进行了数值模拟研究。与实际观测相比,RegCM3成功地模拟出了本次沙尘暴爆发区域、天气形势及相应的沙尘气溶胶光学厚度(AOD)分布。4月9日6时,沙尘暴首先爆发于塔里木和吐鲁番盆地。受蒙古气旋的影响,24 h后甘肃中部及内蒙古西部地区也开始爆发沙尘暴。源区地面起沙率大于3 mg·m-2·s-1,单位面积上的沙尘载荷量高于3 000 mg/m2。对流层中低层沙尘主要向东输送,可影响我国华北绝大部分地区,本次沙尘暴过程造成中国北方主要城市空气质量的下降。模拟的AOD分布特征与地面起沙率和载荷量分布特征相对应,并与TOMS 卫星观测的气溶胶指数(AI)的区域和中心值具有较好的一致性。AOD分布由西向东呈递减的趋势,且有两个大于2的高值中心,一个位于新疆塔里木、吐鲁番盆地和古尔班通古特沙漠地区;另一个位于河西走廊和内蒙古交界地区。对比他人研究结果,RegCM3对沙尘的起沙、传输等过程以及AOD的时空分布模拟合理。  相似文献   

18.
利用民勤与周边地区2005年的Landsat-5 TM影像和1∶25万的DEM资料,在ArcGIS的支持下,对GRAPES_SDM沙尘模式中原有的20世纪80年代的地面信息进行更新与对比,在此基础上就2010年4月23日至25日的沙尘天气过程进行土地覆盖更新前后的数值模拟对比试验,并结合民勤站的沙尘浓度观测数据对模拟结果进行评价分析。结果表明,与模式中原有的土地覆盖信息相比,民勤及周边地区2005年的沙地、草地、耕地、水体、湿地面积明显减少,城乡用地变化不大;土地覆盖变化影响了模式输出的起沙通量和沙尘浓度的范围与强度。一方面,土地覆盖的更新使得起沙总体上有所减弱,且影响程度随过程的增强而逐渐增大。另一方面,土地覆盖变化对地面沙尘浓度的影响具有初期性、移动性和尺度适应性,同时也显著地改变了沙尘浓度的垂直分布。此外,起沙过程中土地覆盖信息的更新有利于民勤站沙尘浓度模拟值接近观测值,表明沙尘模式中的土地覆盖信息应该具有现势性。  相似文献   

19.
区域气候模式对中国沙尘天气气候特征的模拟研究   总被引:1,自引:0,他引:1  
黄乾  姚素香  张耀存 《中国沙漠》2012,32(1):188-197
现有的沙尘天气数值预报模式多选用中尺度天气模式单向耦合起沙模式的方式,不适合用来模拟沙尘气溶胶的长距离输送过程,也无法研究沙尘气溶胶辐射效应对气象场的反馈及气候变化的影响。利用一个耦合沙尘模式的高分辨率区域气候模式,模拟了2001年中国北方沙尘天气爆发的时空分布特征。模拟结果与站点观测结果对比发现,模式能够较好地模拟出中国北方主要的沙尘源地分布及沙尘天气爆发的季节变率。分析不同粒径沙尘颗粒的垂直分布特征发现,沙源地表土壤粒子特征、地形对起沙颗粒的大小都有影响;直径超过5 μm的大粒子是北方沙尘天气的主要成分,而影响长江以南的沙尘天气主要以1 μm以下的小粒子为主。对沙尘传输路径的模拟结果和实况观测发现,来自于不同沙源的沙尘天气其影响的范围有显著差异,模式能够较好地模拟出中国主要沙尘传输路径。  相似文献   

20.
沙尘暴是一种危害严重的气象灾害,其形成依赖于大气环流和沙质地表两种不同密度的物理介质的相互作用,风力条件和下垫面的性质是影响沙尘暴强度和危害程度的两个重要因素。减轻沙尘暴危害的有效方法就是改善沙尘暴源地的下垫面状况,但这需要评估下垫面各因子在不同天气、气候背景条件下对沙尘暴发生的影响程度。从下垫面的角度出发,以内蒙古中西部地区为例,利用气象资料和实测数据,应用AHP方法对下垫面定性与定量因子进行综合分析,得出不同地区下垫面因子对沙尘暴发生作用的权重,为从下垫面角度研究沙尘暴危险度奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号