首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 85 毫秒
1.
为查明大同盆地高砷地下水的分布规律及其主要控制因素,对大同盆地典型高砷区35件地下水样进行了水化学特征及形态分析研究。结果表明,高砷地下水[ρ(As)≥50μg/L]主要存在于20~50 m的浅层地下水中,总砷质量浓度为0.56~927μg/L,主要以As(Ⅴ)形态存在。该区高砷地下水以Na-HCO3型水为主,具有明显的高pH值,高HCO-3、Fe2+、HS-质量浓度及低Eh值,低SO2-4质量浓度特征。这可能与微生物催化氧化有机碳的同时还原含铁矿物和硫酸盐的过程有关。PHREEQC模拟矿物饱和指数结果表明,高砷地下水[ρ(As)≥50μg/L]中菱铁矿均为过饱和,而低砷地下水[ρ(As)50μg/L]中均不饱和,且菱铁矿饱和指数与地下水中总砷质量浓度呈显著正相关性,该现象表明微生物还原含铁矿物生成FeCO3(菱铁矿)的过程可能是控制本区地下水中砷富集的主要因素。  相似文献   

2.
在内陆干旱区,作为重要饮用水源的地下水常面临氟含量超标问题。查明内陆干旱区高氟地下水的分布规律,了解氟在地下水中的富集过程及其影响因素,既可丰富高氟地下水的研究体系,也是保证内陆干旱区饮水安全的重要基础。以新疆阿克苏地区典型山前洪积扇——依格齐艾肯河-喀拉玉尔滚河河间地带为研究区,基于水文地球化学调查结果,刻画了高氟地下水的分布区;结合氟离子含量与特征性水化学指标间的关系,揭示了高氟地下水的成因机制。结果表明:(1)地下水中氟含量的变化范围为0.8~6.1 mg/L,83%的水样氟含量超过《生活饮用水卫生标准》(GB 5749-2006)规定的上限(1.0 mg/L);(2)总体上,氟含量沿地下水流动路径逐渐增大,低氟地下水(ρ(F~-)≤1.0 mg/L)分布在国道314以北的补给区,高氟地下水(ρ(F~-)1.0 mg/L)分布在国道314以南的径流区和排泄区;(3)高氟地下水的水化学类型以Cl·HCO_3-Na型为主,而低氟地下水则以Cl·SO_4-Na型为主,高氟地下水相比于低氟地下水优势阴离子偏向于HCO~-_3;(4)地下水的pH值范围为7.9~8.9(均值为8.4),表明其处于弱碱环境中。地下水中ρ(F~-)与pH值呈正相关,此外构成浅层含水层的上更新统沉积物中含有黑云母、氟磷灰石等矿物,其表面存在一定数量的可交换F~-,这表明水中OH~-与矿物表面F~-间的阴离子交换可能对氟的富集有一定贡献;(5)地下水的F~-含量与Ca~(2+)含量呈负相关,即高氟地下水中ρ(Ca~(2+))小于低氟地下水。考虑到氟化钙(CaF_2)是自然界中的主要含氟矿物,也是地下水中氟的主要来源,ρ(F~-)与ρ(Ca~(2+))间的这种负相关指示着高氟地下水中可能存在去Ca~(2+)、Mg~(2+)作用,如阳离子交替吸附或碳酸盐岩沉淀等。研究区地下水样中ρ(F~-)与ρ(Mg~(2+))间也呈负相关关系,且和ρ(F~-)与ρ(Ca~(2+))间的关系高度相似,也佐证了高氟地下水中去Ca~(2+)、Mg~(2+)作用的存在;(6)绝大部分地下水样品都位于氯碱性指数图的负值区域,且ρ(F~-)与CAI-1和CAI-2均呈较好负相关,CAI-1和CAI-2都随ρ(F~-)的增大而减小,这表明高氟地下水中存在Ca~(2+)、Mg~(2+)与Na~+间更强的交换作用,对氟富集起着重要作用。地下水中ρ(F~-)与SAR间呈较好正相关关系,且高氟地下水样的SAR均值(5.71)远大于低氟地下水SAR均值(1.67),这也进一步证明高氟地下水中的Ca~(2+)、Mg~(2+)与含水介质的Na~+间存在强烈的交替作用,对氟的富集起着重要作用;(7)所有地下水样中的萤石均处于未饱和状态,且萤石的饱和指数(SI)与F~-含量间呈现较好的正相关,这表明地下水对含氟矿物(主要是萤石)的持续溶解应是导致研究区地下水中氟富集的主要原因。与之相反,研究区所有地下水样中的方解石均处于过饱和状态(SI0)。这表明CaCO_3的沉淀可能促进了CaF_2的溶解,导致地下水中氟离子质量浓度增高;(8)研究区低氟地下水的δ~(18)O值介于-11.20‰~-10.67‰间,平均值为-10.94‰,而高氟地下水的δ~(18)O值介于-11.65‰~-11.21‰间,平均值为-11.49‰,即低氟地下水较高氟地下水富集δ~(18)O。此外,F~-质量浓度较低(ρ(F~-)≤3.0 mg/L)的地下水样中δ~(18)O值与F~-质量浓度呈负相关,即低氟地下水具有更正的δ~(18)O值;F~-质量浓度较高(ρ(F~-)≥4.8 mg/L)的地下水样中δ~(18)O值与F~-质量浓度的相关性不显著,随F~-质量浓度的增高,δ~(18)O值基本维持不变。以上表明蒸发浓缩作用对地下水中氟的富集贡献较小;(9)研究区地下水中ρ(F~-)/ρ(Cl~-)比值与ρ(F~-)间呈现正相关,即ρ(F~-)/ρ(Cl~-)比值随ρ(F~-)增高呈增大趋势,这也说明地下水中氟富集的主要原因是含氟矿物的溶解,而不是蒸发浓缩作用。此外,Gibbs图也提供了证据:研究区地下水样基本处于水岩作用主导区域,表明地下水化学特征(包括氟的富集)主要受水岩作用控制,蒸发浓缩影响很小。总之,地下水中氟的富集主要由溶解作用引起,OH~-与矿物表面F~-间的交换也有贡献,但蒸发浓缩作用影响微弱。含氟矿物持续溶解的驱动机制是阳离子交替吸附(地下水中Ca~(2+)与岩土颗粒表面Na~+之间)及方解石沉淀所引起的地下水中Ca~(2+)的衰减。  相似文献   

3.
大同盆地高氟地下水的分布特征及形成过程分析   总被引:2,自引:0,他引:2  
大同盆地是典型的高氟地下水分布区,其分布规律和成因在类似地区具有代表性。在对盆地地下水水化学特征和空间变化特征分析的基础上,深入讨论了高氟地下水的空间分布规律、控制因素及其形成的水文地球化学过程。结果表明,整个盆地浅层孔隙水中的氟质量浓度普遍较高,变化范围为0.29~6.22mg/L,平均值为1.82mg/L。氟质量浓度高值区主要分布于盆地中部和北部,呈现出由盆地边缘至盆地中心,质量浓度趋向于升高的变化规律。强烈的蒸发浓缩作用以及高pH、高碱度、高钠低钙含量的水化学特征有利于氟富集。大同盆地高氟地下水的形成是含氟矿物的溶解、离子交换和蒸发浓缩作用等水文地球化学过程共同作用的结果。  相似文献   

4.
柳江盆地北部牛心山地区存在高氟地下水,严重影响居民身体健康。本文选取牛心山地区为研究区,对其浅层地下水运用Piper三线图、Gibbs图、氯碱指数图和离子比例图等方法进行水化学特征及其形成作用分析研究,从矿物溶解与沉淀、离子交换作用角度探讨了地下水中氟的来源和富集机理。结果显示:研究区地下水离子以Ca~(2+)、Na~+和HCO_3~-为主,水体偏碱性,F-浓度超标点位于火成岩侵入边缘地带,水化学类型为Ca-(Na)-HCO_3、Ca-(SO_4)-HCO_3和Ca-(Cl)-SO_4型,高浓度的F-赋存在Ca-(Na)-HCO_3型水中,地下水水化学组分主要受岩石风化作用的影响;水文地球化学过程和地质因素控制地下水化学特征和氟化物的来源、分布;方解石、石膏溶解于地下水作为Ca~(2+)来源影响萤石的溶解与沉淀,阳离子交换作用改变地下水中指定阳离子浓度间接影响F-浓度,同时碱性环境中吸附在黏土矿物上F-被OH-取代,溶解平衡和离子交换是地下水径流中F-浓度变化的主要控制因素。  相似文献   

5.
选取武清北水源地所在Ⅳ级构造单元——武清凹陷为研究区,共布设地下水取样点95个。以第一含水组地下水中氟为研究对象,在水文地质调查及取样分析测试基础上,运用水化学图解、统计分析、水文地球化学模拟等方法,分析武清凹陷浅层地下水中F-含量空间分布特征、演化特点及成因。结果表明:研究区浅层地下水F-质量浓度总体较高,分布趋势为以WN—ES为轴线浓度最高,向两侧浓度逐渐降低;高氟地下水的水化学类型较复杂,总体具有弱碱性、高钠、低钙的特征;高氟水形成主要受控于该地区强烈的蒸发浓缩作用、萤石溶解作用、方解石—白云石沉淀作用和F-解吸作用等。  相似文献   

6.
运用快速聚类法和因子分析法对大同盆地原生高砷、高氟地下水的16个水化学指标的空间变化进行了分析。结果表明,采用快速聚类法结合实际地下水性质可将研究区地下水分为6类具有不同水化学特征的地下水。从山前到盆地中心河间洼地,地下水中的砷质量浓度逐渐升高,盐碱化程度逐渐加重,水环境呈恶化趋势。因子分析法解释了研究区81.6%的水化学数据,分别提取出反映地下水盐分、砷、氟和硝态氮、Fe和Mn及微量组分Sr的5个公共因子。结合当地水文地质条件及水化学类型特征分析发现,研究区地下水经历了较强的水-岩相互作用、蒸发浓缩作用、离子交换作用,同时受人为活动影响,最终形成了现有的地下水水化学特征。两种统计方法均发现高盐分、高砷及高氟地下水分布有一定的重叠性,水化学特征相似。利用因子得分判断地下水水质特征,划分出各公共因子高值区分布情况与快速聚类法结果基本一致。  相似文献   

7.
内蒙古土默川平原地下水水文地球化学特征及其成因   总被引:1,自引:0,他引:1  
通过水文地质调查、水样采集,结合地下水流动系统、统计分析、吉布斯图、Piper三线图和相关性分析,对土默川平原地下水水化学特征进行研究。结果表明,该区地下水呈弱碱性,水化学类型以HCO3-Ca型和Cl-Na型为主。潜水水化学成分主要受水-岩相互作用和蒸发浓缩作用影响,承压水水化学成分主要受水-岩相互作用过程控制。79个潜水样品中方解石和白云石饱和指数小于0的分别为1个和5个,56个承压水样品中饱和指数小于0的均为20个。区域地下水的弱碱性环境、高Na+、低Ca2+为高氟水的形成提供了条件,受蒸发浓缩作用影响潜水高氟区主要分布于托克托县城以东地下水的滞留排泄区;受含水层介质的影响承压水高氟区主要分布于湖积台地区域。局部区域地下水的强还原环境,铁、锰氧化物和氢氧化物的还原性溶解以及HCO–3的竞争吸附是形成高砷水的重要原因,受哈素海湖相沉积物的影响潜水高砷区主要分布在哈素海—高泉营一带;受铁氧化物、氢氧化物还原性溶解及地下水径流条件的控制,承压水高砷区主要分布在平原中部大黑河沿岸。  相似文献   

8.
连云港北部地区高氟地下水分布特征及成因   总被引:2,自引:0,他引:2       下载免费PDF全文
杨磊  龚绪龙  陆徐荣  张岩 《中国地质》2015,(4):1161-1169
为研究连云港北部地区地下水氟水文地球化学特征,采集测试了63件地下水样品,分析了高氟地下水的空间分布特征及其形成的水文地球化学过程。结果表明,地下水中氟的质量浓度呈现出随着地下水流动而逐渐升高的变化规律,高氟地下水分布于海湾低平原及平原洼地。HCO_3~-质量浓度高的弱碱性水化学环境是促进氟富集、并增强其从沉积物向地下水中转化的主要因素。高氟地下水的形成是长期地质作用和地球化学演化的结果,矿物溶解-沉淀作用、蒸发浓缩作用、阳离子交替吸附作用是控制地下水中氟富集的主要水文地球化学过程。  相似文献   

9.
结合稳定同位素( D、18O、13C) ,应用聚类分析和因子分析两种多元统计分析方法,对鄂尔多斯沙漠高原白垩系含水层地下水水化学演化特征进行研究。结果表明: 研究区环河组和洛河组地下水均可分为3 大类,且大致在地下水补给区、径流区和排泄区分别聚类,每一类的水化学特征和同位素特征均存在一定的差异; 研究区地下水均起源于大气降水,发生了岩盐溶滤、碳酸盐矿物溶解、硫酸盐矿物溶解、硅酸盐矿物溶解和阳离子交换等水文地球化学作用。相对洛河组地下水,环河组地下水水化学演化特征还受到了大气降水稀释作用和酸碱演化的影响。  相似文献   

10.
天然成因的高氟地下水是世界范围内备受关注的环境问题和饮用水安全问题。前人对高氟地下水的形成过程已开展了大量研究,但是对于高原盆地复杂水文地质条件下不同类型含水层组(第四系松散层含水层、基岩裂隙或岩溶含水层以及新生代古近纪以来的碎屑岩含水层)高氟地下水的分布和形成过程尚不明确。本文以化隆—循化盆地为研究区,通过采集、测试研究区内的各类地下水样品,分析研究区内不同类型含水层中地下水的化学特征及同位素特征。结果表明,高氟地下水(1.007.73 mg/L)主要分布在沿黄河的河谷区域和巴燕低山丘陵区域的泉水和潜水中以及深部的承压水中,在垂向上高氟地下水无明显分布规律。接受黄河水入渗补给的河谷潜水中氟离子浓度较低,补给黄河的河谷潜水中氟离子浓度较高。贫钙富钠的弱碱性苏打型水有利于地下水中氟的富集。泉水和潜水中氟主要来源于萤石的溶解,而承压水中氟除了来源于萤石外,还来源于其他含氟矿物。对于潜水和第四系松散层泉水,蒸发浓缩作用促进了地下水中氟的富集。另外,阴离子竞争吸附作用、阳离子交换吸附作用是泉水(第四系松散层泉水和基岩裂隙泉水)和潜水中氟元素富集的主要原因,而承压水中氟离子浓度受竞争吸附作用影响较大,阳离子交换吸附作用影响较小。研究成果可为化隆—循化盆地低氟地下水的勘查和开发提供科学依据。  相似文献   

11.
High fluoride and arsenic concentrations in groundwater have led to serious health problems to local inhabitants at Yuncheng basin, Northern China. In this study, groundwater with high fluoride and arsenic concentration at Yuncheng basin was investigated. A majority of the samples (over 60%) belong to HCO3 type water. The predominant water type for the shallow groundwater collected from southern and eastern mountain areas was Ca/Mg-Ca-HCO3 types. For the shallow groundwater from flow through and discharge area it is Na-HCO3/SO4-Cl/SO4/Cl type. The predominant water type for the intermediate and deep groundwater is of Na/Ca/Mg-Ca-HCO3 type. According to our field investigation, fluoride concentration in groundwater ranges between 0.31 and 14.2 mg/L, and arsenic concentration ranges between 0.243 and 153.7 μg/L. Out of seventy collected groundwater samples, there are 31 samples that exceed the World Health Organization (WHO) standard of 1.5 mg/L for fluoride, and 15 samples exceeds the WHO standard of 10 μg/L for arsenic. Over 40% of high fluoride and arsenic groundwater are related to the Na-HCO3 type water, and the other fifty percent associated with Na-SO4-Cl/HCO3-SO4-Cl type water; little relation was found in calcium bicarbonate type water. A moderate positive correlation between fluoride and arsenic with pH were found in this study. It is due to the pH-dependent adsorption characteristics of F and As onto the oxide surfaces in the sediments. The observed negative correlation between fluoride and calcium could stem from the dissolution equilibrium of fluorite. The high concentration of bicarbonate in groundwater can serve as a powerful competitor and lead to the enrichment of fluoride and arsenic in groundwater. Most of the groundwater with high fluoride or arsenic content has nitrate content about or over 10 mg/L which, together with the observed positive correlations between nitrate and fluoride/arsenic, are indicative of common source of manmade pollution and of prevailing condition of leaching in the study area.  相似文献   

12.
This paper reports occurrence of high fluoride concentration in groundwater of Gharbar Village, Dhanbad District, Jharkhand, India. The concentration of fluoride varied from 0.3 to 14.9 mg/L in 27 groundwater samples. The correlation studies demonstrate that fluoride has strong positive correlation with pH and sodium and negative correlation with calcium. It indicates dominance of ion exchange activity and rock water interaction. Thermodynamic consideration shows that all the samples were oversaturated with calcite and most of the samples were under saturated with fluorite. The results indicate that occurrence of high concentration of fluoride is leading by geochemical composition of rocks, alkaline environmental condition, weathering of rocks and ion exchange processes.  相似文献   

13.
为了对大同盆地地下水中砷、氟、碘等的分布和成因进行分析,开展地下水质量区划,依据地下水污染调查取得的最新系列测试数据,结合以往水文地质和水文地球化学研究成果,编制大同盆地浅层和中深层地下水砷含量、氟含量、碘含量等水化学特征分布图,以直观反映大同盆地地下水高砷、高氟、高碘区的空间分布规律; 通过分析pH值、硫酸根含量、硝酸根含量、铁含量、锰含量与砷的关系,探讨高砷水的形成原因; 根据pH值、钙离子、重碳酸氢根离子与氟的关系,分析氟超标原因; 指出高碘区与高氟区分布的相似性和成因的相似性。研究结果表明,盆地周边高砷、高氟岩层是地下水砷、氟的原生来源,特定的河湖相沉积环境则为砷、碘的富集提供了原生地质条件; 北部地区氟增高与地下水位下降致使黏性土中的氟离子进入含水层有关,中部地区高氟与土壤盐渍化有关; 中部富含淤泥质黏土的湖相地层是碘富集的原生地质因素,冲积洼地地下水径流条件滞缓是碘富集的水动力因素; 干旱气候条件下强烈的蒸发浓缩作用亦是高氟、高碘地下水形成的重要因素。依据砷、氟、碘、硝酸盐、亚硝酸盐、总含盐量(total dissolved salt,TDS)、总硬度、氨氮等单组分含量分布,利用GIS空间分析功能,进行了大同盆地浅层和中深层地下水质量区划,可为当地地下水开发利用提供地学依据。  相似文献   

14.
Groundwater is a significant water resource in India for domestic, irrigation, and industrial needs. By far the most serious natural groundwater-quality problem in India, in terms of public health, derives from high fluoride, arsenic, and iron concentrations. Hydrogeochemical investigation of fluoride contaminated groundwater samples from Kolar and Tumkur Districts in Karnataka are undertaken to understand the quality and potability of groundwater from the study area, the level of fluoride contamination, the origin and geochemical mechanisms driving the fluoride enrichment. Majority of the groundwater samples did not meet the potable water criteria as they contained excess (>1.5 mg/L) fluoride, dissolved salts (>500 mg/L) and total hardness (75–924 mg/L). Hydrogeochemical facies of the groundwater samples suggest that rock weathering and evaporation–crystallization control the groundwater composition in the study area with 50–67% of samples belonging to the Ca–HCO3 type and the remaining falling into the mixed Ca–Na–HCO3 or Ca–Mg–Cl type. The saturation index values indicated that the groundwater in the study area is oversaturated with respect to calcite and under-saturated with respect to fluorite. The deficiency of calcium ion concentration in the groundwater from calcite precipitation favors fluorite dissolution leading to excess fluoride concentration.  相似文献   

15.
氟是维持人体健康所必需的微量元素,过多或过少的摄入都会造成相应的健康问题。本研究从氟的来源、迁移和富集等角度,揭示了内蒙古呼和浩特市托克托县高氟地下水的空间分布规律及其在潜水和承压水中富集的原因。对研究区60个水样(30个潜水和30个承压水)进行了统计分析、水化学特征研究、聚类分析以及相关性分析。结果表明:潜水中F- 浓度为0.40~7.20(2.30±1.80) mg/L,承压水中F- 浓度为0.29~12.70(1.67±2.48) mg/L;地下水中F-浓度与HCO-3、Na+、溶解性总固体(TDS)和电导率(EC)呈正相关,与Ca2+呈一定的负相关关系。高氟水的水化学类型主要为HCO3·Cl-Na型。受地下水流场的控制,高氟潜水(>5 mg/L)主要分布在地下水的排泄区;承压水中F- 的富集主要受含水层岩性的影响,氟高浓度(>1.5 mg/L)分布区主要集中在研究区南部的湖积台地区域。  相似文献   

16.
To study arsenic(As) content and distribution patterns as well as the genesis of different kinds of water, especially the different sources of drinking water in Guanzhong Basin, Shaanxi province, China, 139 water samples were collected at 62 sampling points from wells of different depths, from hot springs, and rivers. The As content of these samples was measured by the intermittent flowhydride generation atomic fluorescence spectrometry method(HG-AFS). The As concentrations in the drinking water in Guanzhong Basin vary greatly(0.00–68.08 μg/L), and the As concentration of groundwater in southern Guanzhong Basin is different from that in the northern Guanzhong Basin. Even within the same location in southern Guanzhong Basin, the As concentrations at different depths vary greatly. As concentration of groundwater from the shallow wells(50 m deep, 0.56–3.87 μg/L) is much lower than from deep wells(110–360 m deep, 19.34–62.91 μg/L), whereas As concentration in water of any depth in northern Guanzhong Basin is 10 μg/L. Southern Guanzhong Basin is a newly discovered high-As groundwater area in China. The high-As groundwater is mainly distributed in areas between the Qinling Mountains and Weihe River; it has only been found at depths ranging from 110 to 360 m in confined aquifers, which store water in the Lishi and Wucheng Loess(Lower and Middle Pleistocene) in the southern Guanzhong Basin. As concentration of hot spring water is 6.47–11.94 μg/L; that of geothermal water between 1000 and 1500 m deep is 43.68–68.08 μg/L. The high-As well water at depths from 110 to 360 m in southern Guanzhong Basin has a very low fluorine(F) value, which is generally 0.10 mg/L. Otherwise, the hot springs of Lintong and Tangyu and the geothermal water in southern Guanzhong Basin have very high F values(8.07–14.96 mg/L). The results indicate that highAs groundwater in depths from 110 to 360 m is unlikely to have a direct relationship with the geothermal water in the same area. As concentration of all reservoirs and rivers(both contaminated and uncontaminated) in the Guanzhong Basin is 10 μg/L. This shows that pollution in the surface water is not the source of the high-As in the southern Guanzhong Basin. The partition boundaries of the high- and low-As groundwater area corresponds to the partition boundaries of the tectonic units in the Guanzhong Basin. This probably indicates that the high-As groundwater areas can be correlated to their geological underpinning and structural framework. In southern Guanzhong Basin, the main sources of drinking water for villages and small towns today are wells between 110–360 m deep. All of their As contents exceed the limit of the Chinese National Standard and the International Standard(10 μg/L) and so local residents should use other sources of clean water that are 50 m deep, instead of deep groundwater(110 to 360 m) for their drinking water supply.  相似文献   

17.
Fluoride (F?) is essential for normal bone growth, but higher concentration in the drinking water causes health problems which are reported in many states of India. Andhra Pradesh is one of the states which suffer from excess fluoride in groundwater particularly in the hard rock terrain. In this context, a study was conducted in Andhra Pradesh based on chemical analysis of water samples from hydrograph net work stations (dug wells) and exploratory bore wells. The concentration of fluoride in groundwaters ranges from traces to 9.75 mg/l. The occurrence of fluoride is mostly sporadic, uneven and varies with depth. The highly affected districts include Nalgonda and Warangal in Telangana region, Prakasam in coastal region, Anantapur and Kurnool in Rayalaseema region. In certain areas of Nalgonda district, 85% of wells have fluoride more than permissible limit (> 1.5 mg/l) for drinking water. High F? is present in all the geological formations, predominantly in granitic aquifers, compared to the other formations. The average value of fluoride is high in the deeper zone (1.10 mg/L), compared to the shallow zone (0.69 mg/L). The fluoride-rich minerals present are the main sources for fluoride concentrations in groundwater. Residence time, evapotranspiration and weathering processes are some of the other supplementary factors for high fluoride concentrations in groundwater. Long-term data of hydrograph net work stations (dug wells) reveal that fluoride concentrations do not show any marked change of trend with respect to time. The concentration of fluoride is found to increase with increase of Na+and HCO 3 ? , and decrease with increase of Ca2+. Sodium bicarbonate waters are more effective in releasing fluoride from minerals into groundwater. High fluoride waters are of Na+ type. The paper presents a brief account of the study and its results.  相似文献   

18.
塔城盆地地下水氟分布特征及富集机理   总被引:2,自引:0,他引:2  
塔城盆地位于新疆维吾尔自治区西北部,干旱少雨,蒸发强烈。但相对于新疆其他盆地,塔城盆地地下水水质相对较好,溶解性总固体和F-含量相对较低。为解译这种差异及盆地内高氟地下水的成因,本文在对盆地地下水样品水化学组分系统分析的基础上,结合多种水文地质调查数据,利用数理统计、离子比及主成分分析等手段,研究高氟水的成因及其分布规律。结果表明:受气候以及地质等因素控制,研究区地下水氟浓度总体较低,高氟水主要分布于扇前洼地及盆地中部的低洼地带;受承压含水层的顶托补给,地下水氟浓度呈现出上高下低的垂向分带特征。研究区地下水径流途径短,水循环快,水岩相互作用时间较短,且山区地下水以深径流形式循环补给平原区深层承压含水层,再顶托补给潜水,避免了强烈的蒸发浓缩作用。山前洪积扇地下水氟富集主要受控于沉积地层中含氟矿物的风化溶解,而岩石风化、蒸发浓缩、阳离子交换、竞争吸附为平原区地下水氟浓度的主要影响因素。  相似文献   

19.
The groundwaters from Zhongxiang City, Hubei Province of central China, have high fluoride concentration up to 3.67 mg/L, and cases of dental fluorosis have been found in this region. To delineate the nature and extent of high fluoride groundwaters and to assess the major geochemical factors controlling the fluoride enrichment in groundwater, 14 groundwater samples and 5 Quaternary sediment samples were collected and their chemistry were determined in this study. Some water samples from fissured hard rock aquifers and Quaternary aquifers have high fluoride concentrations, whereas all karst water samples contain fluoride less than 1.5 mg/L due to their high Ca/Na ratios. For the high fluoride groundwaters in the fissured hard rocks, high HCO3 concentration and alkaline condition favor dissolution of fluorite and anion exchange between OH in groundwater and exchangeable F in some fluoride-bearing minerals. For fluoride enrichment in groundwaters of Quaternary aquifers, high contents of fluoride in the aquifer sediments and evapotranspiration are important controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号