首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
李文婷 《水文》2023,43(2):66-71+77
基于黄河源区1961—2017年逐月气象数据和两期(1980、2015年)土地利用数据集,通过设定多种变化情景,耦合SWAT(soil and water assessment tool)水文模型,探明流域内气候和土地利用变化与蓝绿水的时空响应关系。结果表明:时间上,气候变化情景下,流域内蓝水量减少了16.74 mm/a,绿水量增加了19.52 mm/a;土地利用变化情景下,流域内蓝水量减少了1.9 mm/a,绿水量增加了3.46 mm/a;在气候变化和土地利用变化共同作用下,流域内蓝水量减少了10.09 mm/a,绿水量增加了13.39 mm/a;同时,气候变化对蓝/绿水的贡献率均超过140%,是流域蓝绿水量变化的主导因素;空间上,流域内多种变化情景下,蓝/绿水量在流域内自西北至东南逐渐增加。研究结果将为黄河源区流域水资源调度计划制定提供科学参考。  相似文献   

2.
全球气候变化对湿地生态水文的影响研究综述   总被引:7,自引:0,他引:7       下载免费PDF全文
近百年来全球气候呈现以变暖为主要特征的显著变化,并且未来气温将继续上升,降水模式也会发生改变。从气候变化对湿地水文水资源的影响、气候变化影响下湿地水文与生态的相互作用过程以及湿地生态水文模型等3个方面,对国内外相关研究动态和发展趋势进行了总结分析。从中发现,当前全球气候背景下的湿地生态水文学正在从单一湿地生态水文过程为主要对象,发展成为以研究气候-水文-生态三者相互作用机制为主要内容的综合性、交叉性学科。现关于气候变化影响下水文-生态之间的关系多集中于单向作用的研究,特别是水文过程对植被的影响研究较多,缺乏对气候变化影响下湿地水文过程与生态过程相互作用机理的全面认识。气候变化对湿地生态水文的影响机制研究已经成为水文学研究亟待解决的科学问题,而基于物理机制的湿地生态水文模型,逐渐成为预测未来气候变化下湿地生态水文响应的重要工具。  相似文献   

3.
耦合湿地模块的流域水文模型是开展流域湿地变化的水文效应及其水文功能评估的有效工具,其模拟效率直接关系到模拟精度和应用价值。选取中国湿地主要分布区之一的嫩江流域,利用PHYSITEL/HYDROTEL模型平台,构建孤立湿地和河滨湿地模块并与流域水文模型耦合,并从拟合优度指数和模拟效率角度评价了耦合湿地模块的流域水文模型模拟效率。结果表明,耦合湿地模块的流域水文模型,拟合和验证期间模型的拟合度指数均有所提高,嫩江富拉尔基和大赉水文站控制流域的Nash-Sutcliffe系数和克林效率系数平均提高了3.08%和4.64%,均方根误差和相对偏差平均降低了12.72%和55.93%,且整个研究时段模拟结果的流量指数总体更接近于观测的径流数据。可见,耦合湿地模块的流域水文模型可提高水文过程模拟精度,更好地定量评估湿地水文功能,为流域水资源精准调控与湿地修复保护提供重要支撑。  相似文献   

4.
青藏高原湖泊是气候变化的重要指示器,20世纪90年代中期以来,在暖湿化环境下降水增多和冰川冻土加速融化导致的湖泊扩张是青藏高原最为突出的环境变化特征。值得注意的是,湖泊水位变化的空间分布特征和西风带及印度季风带影响区的降水量变化具有高度的空间一致性。严酷的自然环境导致对青藏高原内陆湖泊的实地观测变得难以企及,而遥感技术的发展正好可以克服以上局限,该技术已经成为青藏高原湖泊变化监测的主要研究手段。本文围绕遥感监测技术与方法,综述了青藏高原湖泊面积、水量、冰物候、水体参数以及水量平衡定量估算等方面的研究进展。部分研究以流域为尺度应用多源遥感与水文模型进行水量平衡定量评估,结果表明青藏高原内陆地区的湖泊水量增加的主要贡献因素是降水增多,而冰川融化、冻土消融及其他因素的贡献程度却相对较小。当前,学术界一般认为:大尺度的降水年代际变化是青藏高原湖泊近期变化的主要原因,而冰川冻土加速消融又进一步加速湖泊扩张或抑制了部分湖泊收缩。过去,关于青藏高原湖泊变化的气候响应机制研究大多停留在对降水、蒸发、温度、风速、冰冻圈融化等气候因素的定性描述上;现在,在湖泊水量平衡方面,越来越多的研究开始在定量化方面取得进展;将来,随着更多遥感数据的开放共享,以及更多水文与气象站点的投入使用,将为青藏高原湖泊的水量平衡定量研究提供更好的数据条件。  相似文献   

5.
沈军  方会超 《地下水》2019,(3):121-124
人类活动与气候变化是影响流域水资源演化、水文循环规律的两大关键性因素。以浑河流域为例,通过分析CMIP5公布的气候模式相关性和相似性,选取5种典型模式并分别计算不同排放情景下的降水和气温,建立产汇流特性水文模型分析模拟浑河流域水资源及其演化规律。结果显示:在未来30年浑河流域水资源量呈现出逐渐增大的趋势,并增加了汛期水量的提升概率;枯季水资源量在高排放情景下呈现出降低的变化趋势,浑河流域水资源时程分配在未来更加不均衡,温室气体的排放将进一步加剧这种不均匀态势。  相似文献   

6.
以内蒙古地区的锡林河流域为研究对象,采用考虑融雪的水量平衡模型(SWBM模型),在对锡林河流域水文模拟的基础上,评估了流域水资源对气候变化的响应。结果表明:SWBM模型锡林河流域月径流过程具有较好的模拟效果,率定期和检验期的模型效率系数均超过60%,相对误差也均小于8%,在未来全球气候变化背景下,流域水资源以减少趋势为主,2030年之后,减少幅度将可能超过10%。  相似文献   

7.
李正最  周慧  张莉  毛德华 《水文》2018,38(3):29-36
流域水资源演化与气候变化和人类活动紧密相关,气候变化与人类活动的加剧极大地改变了流域水文循环。通过相似性和独立性分析,从CMIP5公开发布的47个气候模式中筛选出5个代表性气候模式,然后计算未来高、中、低3种不同排放情景下的气温和降水,构造符合研究区产汇流特性的水文模型,计算洞庭湖流域水资源量并分析其演化规律。结果表明:不论温室气体排放水平如何,洞庭湖流域水资源量在未来60a呈现增加态势,汛期水量增加概率加大,而在高排放情景下枯季水资源量表现为减少趋势;未来洞庭湖流域水资源的时程分配将更趋不均匀化,而温室气体的持续排放将使其变化加剧。  相似文献   

8.
湿地地表水—地下水交互作用的研究综述   总被引:1,自引:1,他引:0  
湿地地表水—地下水之间的水量与水质交互作用是影响湿地水文过程及其生态环境效应的重要机制。从湿地地表水—地下水交互作用的内涵、影响因素、界面效应及其研究方法与模型等5个方面,归纳总结了国内外相关的研究成果。分析认为:湿地地表水—地下水交互作用受到地质/水文地质条件与水文情势共同控制,对未来变化环境尤其是气候变化的响应机制是其影响因素研究关注的焦点,在此背景下物理—化学—生物多层次环境界面之间的"激励—响应"更加显著,将成为理解湿地—地下水交互作用过程及其环境反馈的重要内容。结合多学科交叉理论与方法,利用不同界面特征的响应变化反馈指示湿地地表水—地下水交互作用是未来研究方法发展与创新的基本思路。结合湿地水文特性整合不同尺度的数据信息、耦合交互过程的不同机制等是模型构建的关键科学问题,实现交互作用过程中的地表水—地下水耦合、水量—水质联合模拟是模型研究的发展趋势。  相似文献   

9.
土地利用和气候变化对王家桥小流域径流的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
以三峡库区内典型小流域王家桥为例,利用SWAT模型模拟土地利用和气候变化及两者共同作用对径流的影响。结果表明:扩大耕地、退耕还林、发展经济林的土地利用情景下,年均径流量较基准年变化率分别为15.13%、-13.99%、23.22%,退耕还林能有效调节和减少流域径流量;浓度路径为RCP2.6、RCP4.5、RCP8.5的气候变化情景下,径流量变化率分别为7.13%、7.78%、8.91%,径流量随未来温室气体和硫酸盐气溶胶排放情况增大而增加;两者综合情景下年均径流量均增加,2030年左右增幅较显著;对影响径流的因素进行方差分析,发现土地利用变化对径流的影响比气候变化的影响更显著。在未来气候变化背景下,可通过合理配置流域的土地利用类型,实现对流域水量平衡的调节。  相似文献   

10.
中国水库数目众多,密集的水库运行和调蓄影响着陆地水循环和陆气间的水分能量交换过程,给高强度开发地区水文规律认知和水文模拟及预报带来了挑战。围绕这一问题,本研究以鄱阳湖流域及流域内千余座水库为研究对象,从水库水量平衡方程、水库蓄泄规则、多阻断扩散波汇流等方面构建了水库群参数化方案,并从地表水、地下水、蒸散发、能量通量等角度实现了其与陆面水文双向耦合模式(CLHMS)的动态耦合。结果表明:所构建的水库群参数化方案可以较好地模拟水库的蓄泄过程,提高了耦合模式在鄱阳湖流域的径流模拟精度;水库群可以使赣江、信江、抚河丰水期径流减少3.7%~6.0%,枯水期径流增加5.9%~12.6%,多年平均径流减少0.6%~1.5%;在空间分布上,水库群对流域中部和北部径流的调蓄作用相对显著。本研究所改进的陆面水文模式可以为高强度人类活动影响下气象、水文、水资源交叉领域的研究提供分析工具和模型基础,从而支撑变化环境下区域水资源的可持续利用。  相似文献   

11.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

12.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

13.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

14.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

15.
Upstream inflow decline and excessive water withdrawal are the major reasons for failure in maintaining ecological functions of wetlands and could lead to wetland drought and degradation. Quantitative evaluation of wetlands drought constitutes the basis for managing and scheduling water resources and guaranteeing biological safety. In the study, we proposed a Palmer wetland drought index (PWDI) based on the water balance model that describes wetland hydrological characteristics linked to its located basin to describe drought-reflected ecological characteristics in lacustrine Baiyangdian Wetland and compared it with Palmer drought severity index (PDSI). The results presented that PWDI is able to reflect the worst drought in history, and the drought is mainly affected by water stored in the wetland, but PDSI is inadequate for evaluating the wetland drought. The PWDI methodology provides a clear, objective approach for describing the intensity of drought and can be readily adapted to characterize drought on an operational basis.  相似文献   

16.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

17.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

18.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

19.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

20.
湿地水文学研究进展   总被引:36,自引:4,他引:36       下载免费PDF全文
水文过程在湿地形成、发育、演替直至消亡全过程中起重要作用.降水截流、径流和蒸散作用是湿地 大气界面水文过程研究的热点和重点,开发的模型较多但尚需进一步检验和完善.片流和明渠流是湿地主要地表径流,其中片流受地形坡度等因素影响而难以精确计算.湿地的地下水文系统对季节性积水湿地尤为重要,但是关于泥炭沼泽的垂向水力联系尚需进一步研究.可持续的湿地水文管理必须将人类活动和气候变化这两个因素纳入湿地综合水文模型,然而目前除少数几个综合模型外,大多数的湿地水文模型并非如此.加强湿地水文观测、多手段多技术相结合和开发综合湿地水文模型应是今后湿地水文学研究的主流.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号