首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Palmer干旱指数在淮河流域的修正及应用   总被引:3,自引:0,他引:3  
Palmer指数是目前研究区域干旱时应用最广泛的指数之一,但由于其空间适用性比较强,所以在应用已修正的Palmer指数描述淮河流域干旱等级和持续时间时和实际情况有较大差异,因此有必要做进一步订正。利用淮河流域开封、信阳、巢湖站1961—2009年逐日降水和气温等常规观测资料,根据1965年Palmer指数原理,在200...  相似文献   

2.
Drought disaster management entails not only understanding meteorological drought as a natural hazard but also evaluating the adverse societal impacts related to the economy and human lives. For the purpose of quantifying the drought severity from the perspective of society drought, a drought index, namely “Society Drought Severity Index” (SDSI), was put forward to analyze the drought in Yunnan Province of China. In SDSI for Yunnan, the drought severity was represented by the weighted discrepancy between the “appropriate” water needs and the total available water resources, inspired by the established Palmer Drought Severity Index (PDSI). Technically, the trend in historical water consumption records in agricultural, industrial, and domestic sectors was applied to represent the appropriate water needs; an apparent “runoff” was used to represent the available water resource in Yunnan. The SDSI of Yunnan revealed a trend toward increasing drought severity, which resulted from a combination of meteorological changes and water needs escalation. Moreover, the spatial center of the 2010 drought in Yunnan based on SDSI was different from that identified by PDSI, which exactly reflected the influence of water needs on drought severity. The SDSI was deemed to be a beneficial tool for drought disaster management and drought risk governance.  相似文献   

3.
会仙岩溶湿地是热带和亚热带地区中最大的岩溶湿地之一,由于岩溶湿地脆弱性及人类活动的影响,其湿地面积萎缩,生态功能退化。为了更好保护会仙岩溶湿地,保障湿地的健康和可持续发展,文章探究了造成会仙岩溶湿地退化的关键因子,并结合会仙湿地独特的岩溶特征,筛选出影响会仙湿地健康的指标,利用层次分析法(AHP)对主要指标赋予权重,再通过分析会仙湿地相关资料和标准,构建出一套涵盖3个层次18个评价指标的湿地退化评价指标体系,以此为基础建立了岩溶湿地退化评价方法。   相似文献   

4.
Characteristics of meteorological drought in Bangladesh   总被引:3,自引:3,他引:0  
Meteorological drought events occur in Bangladesh are diagnosed using monthly rainfall and mean air temperature from the surface observations and Regional Climate Model (RegCM) by calculating Standardized Precipitation Index (SPI) and Palmer Drought Severity Index (PDSI) for the period 1961?C1990. The historical records of drought event obtained from the Bangladesh Bureau of Statistics and International Disaster Database are used to verify the SPI and PDSI detected events. The SPI and monthly PDSI are obtained for 27 station data across Bangladesh as well as for two subregions over the country. Result based on the observed data shows that regional information is better in drought diagnosis compared to the point information. The regional analysis is able to detect about 80?% of the drought events occurred during the study period. Frequency of moderate drought is higher for all over the country. The SPI calculated from RegCM rainfall shows that the detection of moderate drought events is 10, 7, and 21?% overestimated for 1-, 3-, and 6-month length, respectively, compared to using of observed data. For extreme drought cases, detection is overestimated (underestimated) by 25?% (79?%) for 1-month (6-month) length. The PDSI results for model and observed data are nearly same to SPI calculations. Model monthly PDSI result is overestimated (underestimated) by 29?% (50?%) for moderate (severe) drought events with reference to the observed PDSI. Hence, RegCM output may be useful to detect 3?C6-month (monthly to seasonal) length moderate drought events over a heavy rainfall region likely Bangladesh.  相似文献   

5.
使用1982-2006年GIMMS AVHRR NDVI数据集与同期的CI、K、Pa、SPI、Z、PDSI等干旱指数做了对比分析, 讨论了河南省植被状态指数VCI对气象干旱的滞后效应及干旱监测能力. 结果表明: VCI指数与气象干旱指数的相关性受不同下垫面的影响较大, 农地的VCI与气象干旱指数相关性要明显高于林地, 农地VCI与气象干旱指数呈现正相关关系. 在河南省不同的作物生长阶段, VCI对气象干旱有着不同的滞后效应, 其中, 3-5月份冬小麦生长期VCI对气象条件的反应滞后1~3个月, 7、9月份夏玉米生长期VCI对气象条件的反应滞后1月. 总体上看, 结合前期的气象数据, VCI对河南省气象干旱有一定的指示作用和监测能力.  相似文献   

6.
PDSI在甘肃中东部地区的修正和应用   总被引:3,自引:1,他引:2  
依据PDSI的基本原理和方法,针对甘肃中东部地区的实际情况,从建模资料长度、站点密度、可能蒸散的计算、土壤田间持水量和径流计算等几个方面对原有模式进行了修正,建立了适用于该区的PDSI并确定了权重因子,计算了20个代表站的PDSI值,并与实际的旱情记载进行对照检验,结果表明,用修正后的PDSI计算的旱度值与实际灾情基本上吻合,能较好地反映出甘肃中东部地区的干旱程度,尤其是对一些重大旱段反映明显。在此基础上,进一步分析了干旱的基本特征,为防灾减灾提供科学依据。  相似文献   

7.
胶州湾滨海湿地的景观格局变化及环境效应   总被引:3,自引:0,他引:3  
在湿地景观类型分类基础上,利用RS及GIS技术提取了1986、1995和2010年胶州湾滨海湿地的Landsat卫星假彩色合成影像的空间属性数据,利用斑块动态度、斑块密度指数、景观多样性指数、斑块破碎化指数研究了胶州湾滨海湿地的景观格局变化及累积环境效应。结果表明,1986~2010年胶州湾滨海湿地总面积减少,河流与河口湿地面积稍有增大,潮间带滩涂和潮上带湿地面积和斑块数减小;养殖池面积增大、斑块数增多,盐田面积减小、斑块数基本未变,增加了湿地公园这种新的人工湿地景观类型。期间,湿地的景观斑块密度指数、多样性指数和景观斑块破碎化指数增大了。上述湿地面积和景观格局变化是由围垦、城市化、港口和道路建设、河流径流量和输沙量减少、海岸侵蚀、海水入侵、全球变暖、海面上升等因素引起的,并导致湿地生物多样化水平下降、有害植物入侵、环境净化功能降低、污染和赤潮灾害加重、植被退化演替、渔业资源衰退和湿地生态系统服务价值降低等累积环境效应。为减轻这些不利的累积环境效应,应采取建设湿地自然保护区、控制养殖池和盐田规模、发展工业循环经济和生态农业等措施保护胶州湾滨海湿地。  相似文献   

8.
东北地区湿地及其保护   总被引:7,自引:1,他引:6  
中国东北地区湿地分布面积约1060.69×104hm2,约占东北地区陆地总面积的8.5%.在分析湿地的类型、分布规律及其所面临问题的基础上,阐述了湿地保护的紧迫性和必要性.指出水是湿地生态环境系统中的重要因子,保护湿地生态环境,首要是加强水资源环境的保护.提出了完善法规,保护湿地资源;开展湿地资源调查,加强综合研究;科学管理湿地,严把开发利用审批关;合理配置水资源,保护湿地生态环境;建立湿地保护和合理利用示范区;实行退牧还泽还草,退耕还沼还泽等保护对策与措施.  相似文献   

9.
湿地作为地球上宝贵的自然资源,在维持自然生态平衡、改善生态环境、防治污染等方面具有极其重要的功能。基于Landsat 8 OLI遥感数据,通过对比分析关于湿地和水体的不同提取方法及结果,确定了适合于白洋淀淀区湿地和开阔水体的最佳提取方法,并利用改进的指数方法和谱间关系法分别对淀区湿地和开阔水体进行了定量化提取。鉴于白洋淀淀区湿地主要包括开阔水体和芦苇区两部分,将淀区内湿地和开阔水体进行几何拓扑后,得到淀区内芦苇区的范围。总结出一套适用于白洋淀湿地及其组成部分提取的综合方法,为利用遥感技术在白洋淀淀区内提取湿地及相关信息提供了方法借鉴。  相似文献   

10.
湿地是流域水循环和水量平衡的重要调节器,在维护流域水量平衡、减轻洪旱灾害和应对气候变化等方面发挥极其重要的作用。流域湿地水文调蓄功能是湿地生态水文学研究的重要内容,科学认识和理解流域湿地水文调蓄功能对流域湿地恢复保护、水资源综合管控与应对气候变化具有极其重要的意义。本文阐述了流域湿地水文调蓄功能的概念与内涵,剖析了流域湿地水文调蓄功能时空变异性、阈值性和多维性三大特征及其影响因素(包括湿地土壤特性、植被特征和初始水文条件等内在因素和流域特征、降雨特征、气候变化和人类活动等外在因素),探讨了流域湿地不变情景下和变化情景下水文调蓄功能评估方法,并介绍了流域湿地水文调蓄功能定量评估模型与应用情况。最后,从学科发展和实践需求的视角提出了流域湿地水文调蓄功能未来亟需加强研究的重点方向。  相似文献   

11.
Drought has an impact on many aspects of society. To help decision makers reduce the impacts of drought, it is important to improve our understanding of the characteristics and relationships of atmospheric and oceanic parameters that cause drought. In this study, the use of data mining techniques is introduced to find associations between drought and several oceanic and climatic indices that could help users in making knowledgeable decisions about drought responses before the drought actually occurs. Data mining techniques enable users to search for hidden patterns and find association rules for target data sets such as drought episodes. These techniques have been used for commercial applications, medical research, and telecommunications, but not for drought. In this study, two time-series data mining algorithms are used in Nebraska to illustrate the identification of the relationships between oceanic parameters and drought indices. The algorithms provide flexibility in time-series analyses and identify drought episodes separate from normal and wet conditions, and find relationships between drought and oceanic indices in a manner different from the traditional statistical associations. The drought episodes were determined based on the Standardized Precipitation Index (SPI) and Palmer Drought Severity Index (PDSI). Associations were observed between drought episodes and oceanic and atmospheric indices that include the Southern Oscillation Index (SOI), the Multivariate ENSO Index (MEI), the Pacific/North American (PNA) index, the North Atlantic Oscillation (NAO) Index, and the Pacific Decadal Oscillation (PDO) Index. The experimental results showed that among these indices, the SOI, MEI, and PDO have relatively stronger relationships with drought episodes over selected stations in Nebraska. Moreover, the study suggests that data mining techniques can help us to monitor drought using oceanic indices as a precursor of drought.  相似文献   

12.
浅埋的地下水位以及泉水溢出是张掖城市湿地形成的主要原因。在充分考虑保持湿地现状的同时,顾及到湿地区内农耕区不至于因地下水位变化而产生负茴环境地质影响。将2005年8月份湿地保护区水位埋深,确定为保持湿地现状的地下水位埋深临界值。按照张掖城市湿地保护区的基本特征、表现、生态保护目标,生态需水量主要包括湿地植被蒸腾量、湿地土壤蒸发量、灌溉需水量以及景观建设需水量等。计算得生态需水量为3053.87×10^4m^3/a。湿地生态需水量的分析与计算对于制定合理的湿地保护措施具有重要意义。  相似文献   

13.
黄淮海湿地系统分类体系构建   总被引:2,自引:0,他引:2  
黄淮海平原是3条大河在时空演化过程中形成的,其内形成了复杂多样的湿地系统和类型.由于受强烈的人类活动影响,湿地系统演变的自然规律特性逐渐消失,明显受到人为调控下的水文情势制约,并在空间分布上也是持续萎缩,湿地系统的整体性联系被明显打破,景观破碎化、退化严重.构建一个符合现存湿地情形、宜于湿地管理的分类体系,对于保护和管理好湿地,发挥其功能具有重要意义.在湿地系统分类中,就人工湿地的划分,突出了其服务功能性质,有利于人工湿地的归类管理.  相似文献   

14.
鄱阳湖水质污染对湿地生态系统生态功能的影响   总被引:6,自引:0,他引:6  
湿她内部生物、物理、化学组份之间的相互作用过程,推动湿地的形成和发育,是其生态结构和生态功能的物质基础。水是鄱阳湖湖泊及其湿地的主体要素之一,各种形式的水是参与湿地生态过程的主体成分.贯穿融于生态形成和系统运作的生物、物理、化学过程的每一个环节,湖泊水质的变化直接影响着湿地的生态过程,影响水域生态系统、湖滩草洲生态系统、农牧与生态系统食物链和食物网的质量.所以水质变化及污染是湿地生态功能衰退研究的核心内容之一。  相似文献   

15.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

16.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

17.
会仙湿地为中国最大的岩溶湿地,近半个世纪,由于人类不合理的开发利用,会仙湿地水域已严重萎缩,开展会仙湿地地下水动态和水均衡的研究,对维持湿地生态功能、湿地水资源管理和湿地保护等方面有极其重要的意义。根据会仙湿地的水文地质条件,将会仙湿地划分为两个地下水系统,即马面狮子岩地下河系统和睦洞河(湖)分散排泄系统,并分别分析了两个地下水系统的补给、径流、排泄特征和地下水动态特征,最后对两个地下水系统进行了地下水均衡计算。结果表明:会仙湿地水位波动受降雨影响明显,各监测点水位变幅不均且水位对降雨响应时间不一致。会仙湿地地下水系统的蓄存量为-6.19万m3,为负均衡,这与均衡期后期干旱有关;会仙湿地岩溶地下水主要补给来源为大气降水入渗,主要排泄方式为潜水径流和蒸发,其系统具有一定的储水调蓄功能,但调蓄能力有限。要长期维护会仙湿地的生态功能,应加强其调蓄能力,可从减少湿地蒸散发量和开采利用量入手,配合湿地生态环境恢复重建,提高水源涵养能力,使湿地水位维持在一个稳定的变化区间内。   相似文献   

18.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

19.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

20.
Climate change is identified as a major threat to wetlands. Altered hydrology and rising temperature can change the biogeochemistry and function of a wetland to the degree that some important services might be turned into disservices. This means that they will, for example, no longer provide a water purification service and adversely they may start to decompose and release nutrients to the surface water. Moreover, a higher rate of decomposition than primary production (photosynthesis) may lead to a shift of their function from being a sink of carbon to a source. This review paper assesses the potential response of natural wetlands (peatlands) and constructed wetlands to climate change in terms of gas emission and nutrients release. In addition, the impact of key climatic factors such as temperature and water availability on wetlands has been reviewed. The authors identified the methodological gaps and weaknesses in the literature and then introduced a new framework for conducting a comprehensive mesocosm experiment to address the existing gaps in literature to support future climate change research on wetland ecosystems. In the future, higher temperatures resulting in drought might shift the role of both constructed wetland and peatland from a sink to a source of carbon. However, higher temperatures accompanied by more precipitation can promote photosynthesis to a degree that might exceed the respiration and maintain the carbon sink role of the wetland. There might be a critical water level at which the wetland can preserve most of its services. In order to find that level, a study of the key factors of climate change and their interactions using an appropriate experimental method is necessary. Some contradictory results of past experiments can be associated with different methodologies, designs, time periods, climates, and natural variability. Hence a long-term simulation of climate change for wetlands according to the proposed framework is recommended. This framework provides relatively more accurate and realistic simulations, valid comparative results, comprehensive understanding and supports coordination between researchers. This can help to find a sustainable management strategy for wetlands to be resilient to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号