首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
1980—1989年全球1000 hPa高度距平3—5年尺度演变   总被引:1,自引:0,他引:1       下载免费PDF全文
吴仁广  陈烈庭 《大气科学》1995,19(5):575-585
80年代发生了两次较强的El Ni?o事件。本文利用 ECMWF的月平均资料,分析了1980—1989年期间1000 hPa高度距平3—5年尺度的全球演变特征。发现了南北半球主要正负距平的演变既有驻波特征,又有传播波特征。南半球正负距平的变化与南方涛动相联系,而北半球正负距平的变化与北方涛动相联系。二者既互相独立,又互相配合。它们在80年代两次ENSO过程的演变中都起着重要作用。特别是1982/1983和1986/1987年El Ni?o事件发生前,分别有明显负距平沿南、北太平洋副热带自西部移向东部,使南  相似文献   

2.
ABSTRACT The authors explored the connection and transition chains of the Northern Oscillation (NO) and the North Pacific Oscilla tion (NPO), the Southern Oscillation (SO), and the Antarctic Oscillation (AAO) on the interannual timescale in a companion paper. In this study, the connection between the transition chains of the four oscillations (the NO and NPO, the SO and AAO) and the El Nifio/La Nifia cycle were examined. It was found that during the transitions of the four oscillations, alternate anticyclonic/cyclonic correlation centers propagated from the Western Pacific to the Eastern Pacific along both sides of the equator. Between the anticyclonic/cyclonic correlation centers, the zonal wind anomalies also moved eastwardly, favoring the advection of sea surface temperature anomalies from the tropical Western Pacific to the Eastern Pacific. When the anti cyclonic anomalies arrived in the Eastern Pacific, the positive phase of NO/SO and La Nifia were established and vice versa. Thus, in 4-6 years, with an entire transition chain of the four oscillations, an E1 Nifio/La Nifia cycle completed. The eastward propagation of the covarying anomalies of the sea level pressure, zonal wind, and sea surface temperature was critical to the transition chains of the four oscillations and the cycle of E1 Nifio/La Nifia. Based on their close link, a new empirical prediction method of the timing of E1 Nifio by the transition chains of the four oscillations was proposed. The assessment provided confidence in the ability of the new method to supply information regarding the long-term variations of the ocean and atmosphere in the tropical Pacific.  相似文献   

3.
郑玉琼  陈文  陈尚锋 《大气科学》2020,44(2):435-454
根据观测资料的研究指出春季北极涛动(Arctic Oscillation, AO)对随后冬季厄尔尼诺-南方涛动(El Nino–Southern Oscillation, ENSO)的影响具有明显不对称性。春季AO处于正位相时,它对随后冬季厄尔尼诺(El Nino)事件的影响显著,然而春季AO负位相对随后冬季拉尼娜(La Nina)的影响不明显。本研究分析了30个来自CMIP5的耦合模式对春季AO与随后冬季ENSO不对称性关系的模拟能力。30个CMIP5耦合模式中,只有CNRM-CM5和GISS-E2-H-CC模式能较好地抓住春季AO与冬季ENSO的联系。进一步分析这两个模式中春季AO与冬季ENSO的不对称性关系,发现CNRM-CM5模式能较好地再现春季AO与冬季ENSO的非对称关系,即春季AO正(负)位相会导致赤道中东太平洋出现El Nino(La Nina)型海表温度增暖(冷却)。然而,GISS-E2-H-CC模式的模拟结果显示,春季AO对随后冬季ENSO的影响是对称的。本文随后解释了CNRM-CM5(GISS-E2-H-CC)模式能(不能)模拟出春季AO与冬季ENSO不对称关系的原因。对于CNRMCM5模式,在春季AO正位相年,副热带西北太平洋上空存在明显的异常气旋和正降水异常,正降水异常通过Gill型大气响应对赤道西太平洋异常西风的形成和维持起着重要作用,异常西风通过激发向东传播的暖赤道Kelvin波对随后冬季El Nino事件的发生产生显著的影响;然而,在春季AO负位相年,副热带北太平洋的异常反气旋和负降水异常较弱,导致赤道西太平洋的异常东风不明显,因此,春季AO负异常对随后冬季La Nina的影响不显著。所以,CNRM-CM5模式能够较好地抓住春季AO对随后冬季ENSO事件的非对称性影响。相比之下,对于GISS-E2-H-CC模式,春季AO正(负)位相年副热带西北太平洋上存在显著的正(负)降水异常,通过Gill型大气响应在赤道西太平洋激发出明显的异常西(东)风从而影响随后冬季的El Nino(La Nina)事件。因此,在GISS-E2-H-CC模式中,春季AO对随后冬季ENSO具有对称性影响。另外,模式捕捉春季AO对随后冬季ENSO非对称性影响的能力与模式对春季AO空间结构的模拟能力有一定的联系。  相似文献   

4.
Summary  In this paper, we first examine the relationship of El Nino and La Nina events with the westerly wind anomalies over the western Pacific warm pool. On this basis, the roles of the Asian and Australian winter monsoons in the formation and progress of the westerly wind anomalies are studied. Finally, we analyze the associations of the Asian and Australian winter monsoons, the westerly wind anomalies and the El Nino and La Nina alternations with the propagating anomalies of the Southern and Northern Oscillation. The results show that the westerly wind bursts are frequent over the Maritime Continent and western Pacific, only those which can further intensify and propagate eastward are accompanied by an El Nino event. It is identified that the establishment and eastward propagation of westerly wind bursts are related to enhanced East Asian and Australian winter monsoon, respectively. The activities of the East Asian and Australian winter monsoon, the variation of the Pacific westerly and trade winds and the alternate appearance of El Nino and La Nina events should be internally connected. The main agents of this relationship are the eastward propagation of alternate positive and negative height anomalies associated with the Southern and Northern Oscillation on a 3–5 year time scale over the south and north tropical Pacific. Received January 4, 1998/Revised January 19, 1999  相似文献   

5.
本文利用1951—1980年逐季的平均值资料(共120个季)讨论了北方涛动和与其相联系的北太平洋海温与北半球海平面气压场、500hPa位势高度场遥相关的基本结构,并与南方涛动和赤道东太平洋海温的结果进行了对比分析.发现北太平洋Namias海区和加利福尼亚海流区海温的变化与北方涛动具有很密切的联系;北方涛动和这两个海区的海温同北半球中高纬度大气环流特别是PNA型和NAO型环流异常存在明显的遥相关关系;南方涛动和赤道太平洋海温同WP型或NPO型环流异常关系比较密切,而与PNA型和NAO型的关系不如北方涛动和Namias海区及加利福尼亚海流区海温的显著.  相似文献   

6.
It has long been acknowledged that there are two types of El Ni(n)o events,i.e.,the eastern Pacific El Ni(n)o (EE) and the central Pacific El Ni(n)o (CE),according to the initial position of the anomalous warm water and its propagation direction.In this paper,the oceanic and atmospheric evolutions and the possible mechanisms of the two types of El Ni(n)o events were examined.It is found that all the El Ni(n)o events,CE or EE,could be attributed to the joint impacts of the eastward advection of warm water from the western Pacific warm pool (WPWP) and the local warming in the equatorial eastern Pacific.Before the occurrence of CE events,WPWP had long been in a state of being anomalous warm,so the strength of eastward advection of warm water was much stronger than that of EE,which played a major role in the formation of CE.While for the EE events,most contribution came from the local warming of the equatorial eastern Pacific.It is further identified that the immediate cause leading to the difference of the two types of El Ni(n)o events was the asynchronous variations of the Southern Oscillation (SO) and the Northern Oscillation (NO) as defined by Chen in 1984.When the transition from the positive phase of the NO (NO+) to NO- was prior to that from SO+ to SO-,there would be eastward propagation of westerly anomalies from the tropical western Pacific induced by NO and hence the growth of warm sea surface temperature anomalies in WPWP and its eastward propagation.This was followed by lagged SO-induced weakening of southeast trade winds and local warming in the equatorial eastern Pacific.These were conducive to the occurrence of the CE.On the contrary,the transition from SO+ to SO- leading the transition of NO would favor the occurrence of EE type events.  相似文献   

7.
The present study discovered a strong negative correlation between Korea-landfalling tropical cyclone (TC) frequency and Pacific Decadal Oscillation (PDO) in the summer. Thus, the present study selected years that had the highest PDO index (positive PDO years) and years that had the lowest PDO index (negative PDO years) to analyze a mean difference between the two phases in order to determine the reason for the strong negative correlation between the two variables. In the positive PDO years, TCs were mainly generated in the southeastern part of the western North Pacific, and lower TC passage frequency was found in most regions in the mid-latitude in East Asia. Moreover, a slightly weaker TC intensity than that in the negative PDO years was revealed. In order to determine the cause of the TC activity revealed in the positive PDO years, 850 hPa and 500 hPa stream flows were analyzed first. In the mid-latitude region in East Asia, anomalous huge cyclonic circulations were strengthened, while anomalous anticyclonic circulations were strengthened in the low-latitude region. Accordingly, Korea was being influenced by anomalous northwesterlies, which played a role in blocking TCs from moving northward to Korea. The results of analysis on 850 hPa air temperature, precipitation, 600 hPa relative humidity, and sea surface temperature (SST) showed that negative anomalies were strengthened in the northwest region in the western North Pacific while positive anomalies were strengthened in the southeast region. The atmospheric and oceanic environments were related to frequent occurrences of TCs in the southeast region in the western North Pacific during the positive PDO years. All factors of air temperature, precipitation, 600 hPa relative humidity, and SST revealed negative (positive for vertical wind shear) anomalies near Korea, so that atmospheric and oceanic environments were formed that could rapidly weaken TC intensity, even if the TCs moved northward to Korea in the positive PDO years.  相似文献   

8.
The summer Asian–Pacific Oscillation(APO) is a major teleconnection pattern that reflects the zonal thermal contrast between East Asia and the North Pacific in the upper troposphere. The performance of Beijing Climate Center Climate System Models(BCC CSMs) with different horizontal resolutions, i.e., BCC CSM1.1 and BCC CSM1.1(m), in reproducing APO interannual variability, APO-related precipitation anomalies, and associated atmospheric circulation anomalies, is evaluated.The results show that BCC CSM1.1(m) can successfully capture the interannual variability of the summer APO index. It is also more capable in reproducing the APO's spatial pattern, compared to BCC CSM1.1, due to its higher horizontal resolution. Associated with a positive APO index, the northward-shifted and intensified South Asian high, strengthened extratropical westerly jet, and tropical easterly jet in the upper troposphere, as well as the southwesterly monsoonal flow over North Africa and the Indian Ocean in the lower troposphere, are realistically represented by BCC CSM1.1(m), leading to an improvement in reproducing the increased precipitation over tropical North Africa, South Asia, and East Asia, as well as the decreased precipitation over subtropical North Africa, Japan, and North America. In contrast, these features are less consistent with observations when simulated by BCC CSM1.1. Regression analysis further indicates that surface temperature anomalies over the North Pacific and the southern and western flanks of the Tibetan Plateau are reasonably reproduced by BCC CSM1.1(m), which contributes to the substantial improvement in the simulation of the characteristics of summer APO compared to that of BCC CSM1.1.  相似文献   

9.
It is known that the wintertime North Pacific Oscillation (NPO) is an important extratropical forcing for the occurrence of an El Ni?o?Southern Oscillation (ENSO) event in the subsequent winter via the “seasonal footprinting mechanism” (SFM). This study reveals that the Atlantic Multidecadal Oscillation (AMO) can notably modulate the relationship between the winter NPO and the following winter ENSO. During the negative AMO phase, the winter NPO has significant impacts on the following winter ENSO via the SFM. In contrast, the influence of the winter NPO on ENSO is not robust at all during the positive AMO phase. Winter NPO-generated westerly wind anomalies over the equatorial western Pacific during the following spring are much stronger during negative than positive AMO phases. It is suggested that the AMO impacts the winter NPO-induced equatorial westerly winds over the western Pacific via modulating the precipitation climatology over the tropical central Pacific and via modulating the connection of the winter NPO with spring sea surface temperature in the tropical North Atlantic.  相似文献   

10.
In this study, the dynamic mechanisms of interannual sea surface height (SSH) variability are investigated based on the first-mode baroclinic Rossby wave model, with a focus on the effects of different levels of wind stress curl (WSC). Maximum covariance analysis (MCA) of WSC and SSH anomalies displays a mode with significant WSC anomalies located primarily in the mid-latitude eastern North Pacific and central tropical Pacific with corresponding SSH anomalies located to the west. This leading mode can be attributed to Ekman pumping induced by local wind stress and the westward-propagating Rossby wave driven by large- scale wind stress. It is further found that in the middle latitudes, the SSH anomalies are largely determined by WSC variations associated with the North Pacific Gyre Oscillation (NPGO), rather than the Pacific Decadal Oscillation (PDO). The sensitivity of the predictive skill of the linear first-mode baroclinic model to different wind products is also examined.  相似文献   

11.
利用ERA-Interim的海平面气压(Sea Level Pressure,SLP)再分析资料和中国160站的降水观测资料,分析了冬季各月(当年12月、次年1月和2月)北太平洋涛动(North Pacific Oscillation,NPO)的年际变化特征,及其与我国同期降水异常之间的联系。结果表明:1)冬季各月NPO指数的年际变化较为显著,但各月NPO指数年际变化之间的相关性较差,1979—2012年冬季12月与1月NPO指数年际变化之间的相关系数为0.09,而1月与2月NPO指数的相关系数仅为-0.003,均没有通过信度检验。2)1月和12月NPO指数年际变化与同期我国黄淮流域降水异常之间存在明显的正相关,而2月NPO指数年际变化与同期我国华北降水异常之间为明显的负相关。3)当1月(12月)NPO指数增加1个标准差时,我国黄淮流域降水量比多年平均值增加约50%(40%);而当2月NPO指数增加1个标准差时,我国华北降水量比多年平均值减少约30%。  相似文献   

12.
With the twentieth century analysis data (1901–2002) for atmospheric circulation, precipitation, Palmer drought severity index, and sea surface temperature (SST), we show that the Asian-Pacific Oscillation (APO) during boreal summer is a major mode of the earth climate variation linking to global atmospheric circulation and hydroclimate anomalies, especially the Northern Hemisphere (NH) summer land monsoon. Associated with a positive APO phase are the warm troposphere over the Eurasian land and the relatively cool troposphere over the North Pacific, the North Atlantic, and the Indian Ocean. Such an amplified land–ocean thermal contrast between the Eurasian land and its adjacent oceans signifies a stronger than normal NH summer monsoon, with the strengthened southerly or southwesterly monsoon prevailing over tropical Africa, South Asia, and East Asia. A positive APO implies an enhanced summer monsoon rainfall over all major NH land monsoon regions: West Africa, South Asia, East Asia, and Mexico. Thus, APO is a sensible measure of the NH land monsoon rainfall intensity. Meanwhile, reduced precipitation appears over the arid and semiarid regions of northern Africa, the Middle East, and West Asia, manifesting the monsoon-desert coupling. On the other hand, surrounded by the cool troposphere over the North Pacific and North Atlantic, the extratropical North America has weakened low-level continental low and upper-level ridge, hence a deficient summer rainfall. Corresponding to a high APO index, the African and South Asian monsoon regions are wet and cool, the East Asian monsoon region is wet and hot, and the extratropical North America is dry and hot. Wet and dry climates correspond to wet and dry soil conditions, respectively. The APO is also associated with significant variations of SST in the entire Pacific and the extratropical North Atlantic during boreal summer, which resembles the Interdecadal Pacific Oscillation in SST. Of note is that the Pacific SST anomalies are not present throughout the year, rather, mainly occur in late spring, peak at late summer, and are nearly absent during boreal winter. The season-dependent APO–SST relationship and the origin of the APO remain elusive.  相似文献   

13.
南极海冰首要模态呈现偶极子型异常,正负异常中心分别位于别林斯高晋海/阿蒙森海和威德尔海。过去研究表明冬春季节南极海冰涛动异常对后期南极涛动(Antarctic Oscillation,AAO)型大气环流有显著影响,而AAO可以通过经向遥相关等机制影响北半球大气环流和东亚气候。本文中我们利用观测分析发现南极海冰涛动从5~7月(May–July,MJJ)到8~10月(August–October, ASO)有很好的持续性,并进一步分析其对北半球夏季大气环流的可能影响及其物理过程。结果表明,MJJ南极海冰涛动首先通过冰气相互作用在南半球激发持续性的AAO型大气环流异常,使得南半球中纬度和极地及热带之间的气压梯度加大,在MJJ至JAS,纬向平均纬向风呈现显著的正负相间的从南极到北极的经向遥相关型分布。对流层中层位势高度场上,在澳大利亚北部到海洋性大陆区域,出现显著的负异常,在东亚沿岸从低纬到高纬呈现南北走向的“? + ?”太平洋—日本(Pacific–Japan,PJ)遥相关波列,其对应赤道中部太平洋及赤道印度洋存在显著的降水和海温负异常,西北太平洋至我国东部沿海地区存在显著降水正异常和温度负异常;低纬度北美洲到大西洋一带存在的负位势高度异常和北大西洋附近存在的正位势高度异常中心,构成一个类似于西大西洋型遥相关(Western Atlantic,WA)的结构,对应赤道南大西洋降水增加和南撒哈拉地区降水减少。从物理过程来看,南极海冰涛动首先通过局地效应影响Ferrel环流,进而通过经圈环流调整使得海洋性大陆区域和热带大西洋上方的Hadley环流上升支得到增强,海洋性大陆区域特别是菲律宾附近的热带对流活动偏强,激发类似于负位相的PJ波列,影响东亚北太平洋地区的大气环流,而热带大西洋对流增强和北传特征,则通过激发WA遥相关影响大西洋和欧洲地区的大气环流。以上两种通道将持续性MJJ至ASO南极海冰涛动强迫的大气环流信号从南半球中高纬度经热带地区传递到北半球中高纬地区,从而对热带和北半球夏季大气环流产生显著影响。  相似文献   

14.
The impact of the boreal summer intraseasonal oscillation (BSISO) on extreme hot and cool events was investigated, by analyzing the observed and reanalysis data for the period from 1983 to 2012. It is found that the frequency of the extreme events in middle and high latitudes is significantly modulated by the BSISO convection in the tropics, with a 3–9-day lag. During phases 1 and 2 when the BSISO positive rainfall anomaly is primarily located over a northwest–southeast oriented belt extending from India to Maritime Continent and a negative rainfall anomaly appears in western North Pacific, the frequency of extreme hot events is 40% more than the frequency of non-extreme hot events. Most noticeable increase appears in midlatitude North Pacific (north of 40°N) and higher-latitude polar region.Two physical mechanisms are primarily responsible for the change of the extreme frequency. First, an upper-tropospheric Rossby wave train (due to the wave energy propagation) is generated in response to a negative heating anomaly over tropical western North Pacific in phases 1 and 2. This wave train consists of a strong high pressure anomaly center northeast of Japan, a weak low pressure anomaly center over Alaska, and a strong high pressure anomaly center over the western coast of United States. Easterly anomalies to the south of the two strong midlatitude high pressure centers weaken the climatological subtropical jet along 40°N, which is accompanied by anomalous subsidence and warming in North Pacific north of 40°N. Second, an enhanced monsoonal heating over South Asia and East Asia sets up a transverse monsoonal overturning circulation, with large-scale ascending (descending) anomalies over tropical Indian (Pacific) Ocean. Both the processes favor more frequent extreme hot events in higher-latitude Northern Hemisphere. An anomalous atmospheric general circulation model is used to confirm the tropical heating effect.  相似文献   

15.
Huang  Ruping  Chen  Shangfeng  Chen  Wen  Yu  Bin  Hu  Peng  Ying  Jun  Wu  Qiaoyan 《Climate Dynamics》2021,56(11):3643-3664

Compared to the zonal-mean Hadley cell (HC), our knowledge of the characteristics, influence factors and associated climate anomalies of the regional HC remains quite limited. Here, we examine interannual variability of the northern poleward HC edge over western Pacific (WPHCE) during boreal winter. Results suggest that interannual variability of the WPHCE is impacted by the El Niño-Southern Oscillation (ENSO) Modoki, North Pacific Oscillation (NPO) and North Atlantic Oscillation (NAO). The WPHCE tends to shift poleward during negative phase of the ENSO Modoki, and positive phases of the NPO and NAO, which highlights not merely the tropical forcing but also the extratropical signals that modulate the WPHCE. ENSO modoki, NPO and NAO modulate the WPHCE via inducing atmospheric anomalies over the western North Pacific. We further investigate the climatic impacts of the WPHCE on East Asia. The poleward shift of the northern descending branch of the WPHC results in anomalous upward (downward) motions and upper-level divergence (convergence) anomalies over south-central China (northern East-Asia), leading to increased (decreased) rainfall there. Moreover, pronounced cold surface air temperature anomalies appear over south-central China when the sinking branch of the WPHC moves poleward. Based on the temperature diagnostic analysis, negative surface temperature tendency anomalies over central China are mostly attributable to the cold zonal temperature advection and ascent-induced adiabatic cooling, while the negative anomalies over South China are largely due to the cold meridional temperature advection. These findings could improve our knowledge of the WPHCE variability and enrich the knowledge of forcing factors for East Asian winter climate.

  相似文献   

16.
利用美国NOAA卫星观测的SOI(Southern Oscillation Index,南方涛动指数)资料以及NCEP/NCAR、CMAP月平均资料,采用相关分析等方法,研究了南方涛动年际变化与夏季亚澳季风环流及海洋性大陆区域气候异常的联系。结果表明:南方涛动具有显著的年际变化特征,这种年际变化对夏季亚澳季风区及海洋性大陆区域的环流、降水及温度异常有重要影响。当SOI正位相时,赤道以南的澳大利亚东部地区以及西北太平洋海域高层为气旋,低层为反气旋,赤道地区的东部太平洋低层为辐散中心,高层为辐合中心,有利于下沉运动维持;加里曼丹岛附近低层辐合,高层辐散,有利于上升运动维持;海洋性大陆地区降水为显著的正异常,东亚地区降水存在较弱的正异常;海洋性大陆地区以及我国青藏高原到东海一带温度为正异常,孟加拉湾及印度半岛区域温度为负异常。  相似文献   

17.
The first leading modes of the interannual variations in low-level circulation over the North and South Pacific are the Northern Oscillation (NO) and Southern Oscillation (SO),which are oscillations in sea level pressure anomalies (SLPAs)between the eastern and western Pacific Ocean.The second leading modes are the North Pacific Oscillation (NPO) and the Antarctic Oscillation (AAO),which reflect oscillations between the subtropics and the high and middle latitudes.The transition chains of these four oscillations were investigated using the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis data.The general pattern of the transition chain between the NO and NPO was from the negative phase of the NO (NO-) to the positive phase of the NPO (NPO+),then from NO+ to NPO-to NO-.The whole transition chain took about 4-6 years.The general pattern and period of the transition between the SO and AAO were similar to those between the NO and NPO.In addition,the transition chains between the NO and NPO,and the SO and AAO,were almost simultaneous.The transition chains of the four oscillations were found to be closely connected,with the eastward propagations of SLPAs occurring along both sides of the Equator.  相似文献   

18.
利用1948—2011年NCEP/NCAR月平均再分析资料和1951—2010年我国160站降水量资料,研究了冬季亚洲—太平洋区域的大气遥相关及其与东亚冬季风和降水的关系。结果表明:冬季在亚洲—西太平洋与中、东太平洋中低纬度对流层上层扰动温度之间存在类似于夏季的亚洲—太平洋涛动 (APO) 现象,即当东亚中低纬度对流层中、上层偏暖时,中东太平洋中低纬度对流层中上层温度偏冷,反之亦然。冬季APO可以反映冬季亚洲—太平洋东西向热力差异强度变化,与夏季相比,冬季APO遥相关在亚洲的中心位置略偏南、偏东,且冬季APO与大气环流关系与夏季也有所不同;当冬季APO指数偏高时,对流层上层东亚大槽位置偏西,而东亚热带地区的高压向北伸展,导致我国南方对流层为深厚的异常反气旋系统所控制,此时南方地区对流层低层盛行异常的偏东北气流,并伴随水汽辐散和异常下沉运动,南方降水偏少;冬季APO指数与ENSO有紧密联系。  相似文献   

19.
Summary ?The upper-air circulation characteristics of the Southern Oscillation (SO) are studied from the 1958–97 NCEP-NCAR Reanalysis. The low/high phase of the SO is defined by anomalously small/large values of the Tahiti minus Darwin surface pressure difference. For the fields of 200 mb topography, divergence and divergent flow, 500 mb vertical motion, and 1000 mb topography, during January, April, July and October, differences are computed between ensembles of years of extremely low versus high SO phase, and tested for statistical significance. The 1000 mb topography bears out SO characteristics consistent with earlier work on surface pressure, such as the seesaw between the western and eastern Pacific in all seasons, and in the low SO phase in the boreal winter a northward displaced near-equatorial trough over the Atlantic. In addition, the new dataset afforded documentation of functional upper-air processes. Thus, overall positive/negative 1000 mb topography anomalies tend to be associated with enhanced/reduced subsidence or reduced/enhanced ascending motion. Ensemble differences in mid-tropospheric vertical motion are coherent with those in upper-tropospheric divergence and divergent flow. Characteristic of the low SO phase are significant positive anomalies of upper-tropospheric topographies especially in the tropics and most prominently over the eastern Pacific, reflecting the anomalously warm atmospheric column, and during the boreal winter a train of centers with alternatingly positive and negative topography differences extending from the tropical Pacific across North America to the Atlantic. Received October 10, 2001; revised May 8, 2002; accepted May 31, 2002  相似文献   

20.
气候系统模式FGOALS_gl模拟的赤道太平洋年际变率   总被引:4,自引:1,他引:3  
满文敏  周天军  张丽霞 《大气科学》2010,34(6):1141-1154
本文分析了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室 (LASG/IAP) 发展的气候系统模式FGOALS_gl对赤道太平洋年际变率的模拟能力。结果表明, FGOALS_gl可以较好地模拟出赤道太平洋SST异常年际变率的主要特征, 但模拟的ENSO事件振幅偏大, 且变率周期过于规则。耦合模式模拟的气候平均风应力在热带地区比ERA40再分析资料的风应力强度偏弱30%左右, 由此引起的海洋平均态的变化, 是造成模拟的ENSO振幅偏强的主要原因。FGOALS_gl模拟的ENSO峰值多出现在春季或夏季, 原因可归之于模式模拟的SST季节循环偏差。耦合模式可以合理再现ENSO演变过程, 但观测中SST异常的东传特征在模式中没有得到再现, 这与模拟的ENSO发展模态表现为单一的 “SST模态” 有关。模拟的ENSO位相转换机制与 “充电—放电” 概念模型相符合, 赤道太平洋热含量的变化是维持ENSO振荡的机制。在ENSO暖位相时期, 赤道中东太平洋与印度洋—西太平洋暖池区的海平面气压距平型表现为南方涛动型 (SO型), 200 hPa位势高度分布表现为太平洋—北美遥相关型 (PNA型)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号