首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
基于相对湿度、能见度等气象数据,分析气溶胶吸湿增长特性,有助于了解气溶胶对大气环境和区域气候的影响。利用南京地区2016年1—12月、2017年2—12月、2018年1—8月和12月相对湿度和能见度等数据,通过非线性拟合研究气溶胶吸湿增长因子(f(RH))与相对湿度(RH)之间的关系。结果表明,吸湿增长因子在RH值较低(<80%)时,增长率较小;当RH值较高(>80%)时,增长率迅速增大。吸湿增长因子随着月RH值变化而表现出较大差异。此外,当南京地区盛行西风时,高能见度出现的时次较多。f(RH)与PM2.5/PM10成正比,PM2.5/PM10值越高,对应的气溶胶光学吸湿增长因子往往会越高。  相似文献   

2.
黄山地区气溶胶吸湿增长特性数值模拟研究   总被引:4,自引:2,他引:2       下载免费PDF全文
江琪  银燕  秦彦硕  陈魁  杨素英 《气象科学》2013,33(3):237-245
应用多种化学组分气溶胶的绝热气块分档模式,对2008年春季黄山地区气溶胶吸湿增长特性进行了模拟分析.结果表明:黄山地区气溶胶吸湿增长因子f的大小与粒子半径、相对湿度、粒子化学组分、上升速度及上升高度密切相关,且小粒子吸湿增长比大粒子显著.吸湿增长因子与相对湿度呈正相关,相对湿度越接近粒子的临界饱和比,吸湿增长因子变化越显著.可溶性有机气溶胶,通过增加溶液中溶质的百分比来影响临界饱和比,使吸湿增长因子增大.若不考虑不可溶粒子的成核作用,会高估粒子的吸湿性.随着上升速度增大,吸湿增长因子降低,降低程度与粒子初始高度的相对湿度有关.上升高度通过改变气块相对湿度的变化来影响气溶胶吸湿增长因子.  相似文献   

3.
北京市区大气气溶胶散射系数亲水增长的观测研究   总被引:13,自引:1,他引:12  
利用自制的"进样气流湿度调节"装置,2005年12月7-22日在中国气象局科技大楼测点(记为CAMS)对北京市区冬季气溶胶散射系数随湿度的变化关系进行了观测试验,结果显示,观测期间北京市区气溶胶散射系数亲水增长因子f(U)(定义为一定湿度下的气溶胶散射系数与"干"气溶胶散射系数的比值)在湿度从低到高的变化过程中,主要表现出"平滑连续"的增长特点.总体上,当相对湿度(U)从小于40%增大到93%左右时,平均气溶胶散射系数亲水增长因子可达2.10,而平均散射系数亲水增长因子f(U=80%±1%)为1.26±0.15.按照污染情况把观测期间划分为"相对污染"时段和"清洁"时段,则在"相对污染"情况时,北京市区CAMS测点的气溶胶散射系数增长因子f(U=80%)大约为1.48,而在"清洁"时段约为1.2.与国外有关观测相比,北京冬季"清洁"时段气溶胶的散射系数亲水增长因子f(U=80%)在数值上与生物质燃烧型和扬尘类型气溶胶的亲水增长相似.反映了在不同天气背景下北京市区的气溶胶类型有不同的特点.  相似文献   

4.
气溶胶粒子的吸湿增长对区域环境、气象与辐射收支都有巨大影响,精确的气溶胶吸湿特性观测对描述气溶胶吸湿增长特性,以及研究气溶胶对气候环境影响,拓展卫星气溶胶产品的应用有非常重要的意义。本研究提出一种基于常规气象观测(能见度、相对湿度)和空气质量观测(PM2.5浓度,即空气动力学当量直径小于等于2.5 μm的颗粒物浓度)相结合的气溶胶吸湿增长估算方法,在此基础上对浙江地区气溶胶吸湿特性的时空变化影响因素进行了探讨。研究发现,沿海的温州瓯海站的吸湿增长能力最高,长三角典型城市环境的杭州和睦小学站的吸湿增长能力次之,而地处较为洁净内陆的衢州实验学校站的吸湿增长能力最低。在时间变化中,同一站点不同湿度条件的吸湿增长变化趋势相同,温州瓯海站的吸湿性变化最为剧烈,杭州和睦小学站的吸湿性变化次之,衢州实验学校站变化较为平缓。本研究表明,浙江地区的气溶胶吸湿增长特性存在较大的时空差异,基于本方法能够在较大的时空范围内描述气溶胶的吸湿增长特性,为有限的精密观测提供重要补充。  相似文献   

5.
使用2008~2012年逐日地面观测资料,揭示了安徽不同地区雾、霾、晴空天气气象条件的差异,指出不同地区要根据本地特点建立雾、霾预报指标和预报方法。3类天气差异最大的地面气象要素是能见度和相对湿度。根据3种天气前一日和当日能见度和相对湿度分布特征,全省站点可以分为3类:1)从雾、霾到晴空,能见度递增、相对湿度递减,且差异显著,如合肥站;2)雾、霾天的能见度和相对湿度均很接近,但与晴空天差别较大,如阜阳站;3)能见度在雾、霾天无明显差别,但相对湿度在雾、霾天差异显著,如安庆站。地级市测站雾后即霾的可能性较大(大于50%),县城测站雾后即霾的可能性较低(低于25%)。垂直方向,雾时相对湿度随高度下降很快,850 h Pa中位值已降到20%(安庆)和45%(阜阳)以下,霾时相对湿度随高度下降缓慢,850 h Pa中位值仍在60%左右;另外,霾天边界层中上部风切变较小,雾天和晴空天边界层中上部都存在较大的风切变。  相似文献   

6.
2009年秋冬季天津低能见度天气下气溶胶污染特征   总被引:8,自引:0,他引:8  
姚青  蔡子颖  韩素芹  曲平 《气象》2012,38(9):1096-1102
为研究天津城区秋、冬季雾霾等低能见度天气下气溶胶污染特征,采用2009年10—12月的大气能见度及相关气象和环境监测数据,并结合一次典型雾霾事件分析PM10和PM2.5质量浓度演化过程及其垂直分布特征。结果表明,低能见度天气占秋、冬季观测时长的一半以上,其中以霾天气为主;典型低能见度过程分析显示,霾日近地层内PM2.5分布均匀,表现出显著的区域污染特征;雾日气溶胶质量浓度先升高后下降,系气溶胶粒子吸湿性增长与导致可溶性组份溶出的湿清除协同作用,低层PM2.5质量浓度显著高于较高层,其垂直分布差异与相对湿度的垂直变化和逆温层高度有关。  相似文献   

7.
自动土壤水分观测数据异常值阈值研究   总被引:4,自引:1,他引:3  
王良宇  何延波 《气象》2015,41(8):1017-1022
根据从国家气象信息中心实时资料数据库读取的自动土壤水分监测资料,计算出各个测站相应的土壤容重、田间持水量、凋萎湿度数据。在具体的业务实践中,参照土壤最大吸湿量数值,将6%作为土壤相对湿度的低值异常阈值;参照土壤饱和含水量数值,将190%作为土壤相对湿度的高值异常阈值;参照土壤水分日变化特点,初步将24 h变化幅度0.1%作为10和20 cm土层土壤相对湿度监测异常的变化阈值。具体分析代表站实测土壤相对湿度随时间的变化幅度,认为在土壤水分上升过程中的小时之间变化幅度应小于土壤饱和含水量(%)与前一监测数据的差值;土壤相对湿度>100%时的下降幅度应小于土壤饱和含水量(%)减去95%;土壤相对湿度≤100%时的下降幅度应小于5%。  相似文献   

8.
雷达比是激光雷达反演气溶胶光学特性的重要参数和影响因素。利用北京地区2016年一次清洁过程(12月10日)和两次污染过程(11月15~18日和12月16~19日)的微脉冲激光雷达、机载浊度计和黑碳仪以及多种地基观测设备,综合研究基于飞机观测订正雷达比的方法及其分布特征。清洁过程地面PM2.5浓度低于40 μg m?3;污染严重时期的PM2.5均高于150 μg m?3且能见度低于5 km,污染过程1存在高空传输的特征。研究结果表明相较于采用单一的柱平均雷达比,利用本文方法获得的雷达比垂直廓线反演得到的气溶胶消光系数和光学厚度更接近原位跟踪观测,精度均有提升。基于此方法获得的雷达比在污染发展不同时期垂直分布差异较大,主要分布在19~76 sr之间,清洁时期雷达比较小且垂直分布差异不大。污染过程1雷达比随高度波动增加至边界层顶(19~45 sr);污染过程2严重期边界层内雷达比随高度由70 sr降低到20 sr;边界层以上均呈现小幅波动变化。边界层内雷达比垂直分布与气溶胶来源特别是高空气溶胶传输有密切联系,混有沙尘的区域传输显著提升了所在高度的雷达比值。边界层以上雷达比受少量大粒子或者强吸收性的气溶胶粒子的影响波动变化。边界层内消光系数增大时雷达比呈增加趋势;当相对湿度高于40%,边界层内雷达比随相对湿度增加而增大。  相似文献   

9.
对流云对大气气溶胶和相对湿度变化响应的数值模拟   总被引:6,自引:3,他引:3  
荣艳敏  银燕 《大气科学》2010,34(4):815-826
利用二维面对称分档云模式研究了气溶胶颗粒物浓度和尺度谱分布对混合相对流云微物理过程和降水的影响, 并重点讨论了气溶胶效应随环境相对湿度的变化。结果表明, 在初始热力和动力条件相同的情况下, 相对清洁的海洋性云在发展和成熟阶段能更有效地产生雨滴、 冰晶和霰粒, 形成更强的雷达反射率。随着气溶胶浓度增加, 比如在本文模拟的污染大陆性云中, 气溶胶粒子数浓度的增加限制云滴增长, 不利于降水粒子的形成。模拟结果也发现, 环境相对湿度对气溶胶效应有显著影响, 即当地面相对湿度从50%增大到70%时, 所模拟的云从浅对流泡发展为深对流云; 气溶胶对云微物理特性和降水的影响在干空气中较小, 但在湿空气中表现非常显著, 这与前人结果一致。随着相对湿度的增加, 冰相粒子出现的时间提前, 增长加快, 云砧范围扩大, 但相对来说, 降水起始时间对相对湿度的变化比气溶胶更敏感。  相似文献   

10.
广州地区低能见度事件变化特征分析   总被引:15,自引:2,他引:13       下载免费PDF全文
使用2004—2007年广州地区番禺、东山和南沙站3套能见度仪和3套自动气象站的逐时能见度、相对湿度等气象要素资料,通过对比研究,分析了3地低能见度事件的年、季和日变化等变化规律。研究表明,近年来广州地区轻雾(雾)出现频率总体较低且日数偏少,霾天气高发期在10月—次年4月、7月极少出现,年变化特征明显。番禺低能见度事件以5~8 km的情况居多,东山和南沙则以8~10 km的轻度视程障碍为主;但同期番禺≥10 km的日数百分比增长最显著,意味着当地能见度有明显好转。低能见度事件多见于70%≤RH90%的中高相对湿度范围,RH30%的低相对湿度情况下未曾出现视程障碍现象;番禺和东山的低能见度事件有随RH减少而增多的趋势,南沙则大致相反。对比分析有代表性的旱、雨季发现,(极端)低能见度事件多在早晚发生,日间能见度低值区则一般出现在正午前后,日变化特征明显,且旱季更显著,同时以番禺最具代表性。总体上广州地区的低能见度事件呈逐年减少的趋势。  相似文献   

11.
通过对广州南沙2016年颗粒物PM_(10)和PM_(2.5)的质量浓度、能见度和气象要素等资料的分析,发现细颗粒物PM_(2.5)是影响能见度变化的重要因素。PM_(2.5)质量浓度和相对湿度(RH)增加,能见度下降,低能见度对应较高的相对湿度和较高PM_(2.5)质量浓度,高能见度的出现则对应较低的相对湿度和较低的PM_(2.5)质量浓度。随着相对湿度的增加,颗粒物质量浓度对能见度的影响越来越小,此时颗粒物对能见度的影响主要是通过吸湿作用,吸湿作用最为明显的是雾和霾的混合区间80%≤RH≤90%。PM_(2.5)质量浓度对能见度的影响随着RH的增加阈值减小,当相对湿度低于90%时,颗粒物质量浓度值减小时,能见度随相对湿度的增加反而降低,尤其是60%RH≤90%的区间,能见度下降明显。  相似文献   

12.
雾和霾是危害人类健康和影响社会经济发展的灾害天气,精细化的实况资料能够在雾和霾的防治中发挥重要作用。利用2017年12月1日至2020年11月30日天津及其周边地区国家气象观测站资料、Himawari-8卫星L1级全圆盘观测数据和L3级气溶胶光学厚度产品,分析了中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)能见度和相对湿度融合实况分析产品判识天津地区雾、轻雾和霾的准确性。结果表明:与台站资料相比,CLDAS产品对轻雾、雾和霾的平均检出率分别为90.4%、84.2%和78.8%;CLDAS产品对轻雾的逐月检出率为81.1%~96.4%,雾和霾出现较多的月份,其检出率均在80.0%左右。个例分析表明CLDAS产品判识的雾、轻雾和霾与台站观测结果以及Himawari-8卫星反演检测结果基本一致。CLDAS产品未正确判识雾、轻雾和霾的情况主要表现为雾误判为轻雾(各站为3.8%~21.4%)和霾漏判(各站为8.6%~25.0%)。当台站水平能见度在区间[0,0.75 km)时,CLDAS能见度的误差主要导致雾误判为轻雾;在区间[0.7...  相似文献   

13.
利用2014年7月在黄山光明顶观测的气溶胶吸湿性参数(κ)和气溶胶离子化学组分、有机碳(OC,organic carbon)数据,对多尺度气溶胶吸湿性参数进行分析,并在此基础上建立了多尺度κ的参数化方案。研究结果表明,影响黄山夏季气溶胶来源的主要气团包括西南气团、北方气团以及东南气团。黄山夏季κ的变化范围为0.2-0.48,且随粒径增大成先增大后减小的分布特征;气溶胶粒径在0.15-1.1 μm的强吸湿段,κ>0.3,而在粒径小于0.15 μm和粒径大于1.1 μm弱吸湿段,κκ分布不同,气溶胶粒子在小于1.1 μm的粒径段,当受西南气团影响时,κ值最大,而受东南气团影响时,κ值最小;在气溶胶粒径大于1.1 μm时,κ在两个气团背景下呈现与气溶胶粒径小于1.1 μm时相反的分布特征。影响粒径小于1.1 μm气溶胶吸湿能力的主要水溶性化学组分为NH4+、SO42-、水溶性有机碳(WSOC,water soluble organic carbon),而影响大于1.1 μm粒径范围气溶胶吸湿能力的主要水溶性化学组分为NH4+、SO42-、NO3-、WSOC和Ca2+。由气溶胶多尺度离子化学组分和WSOC构建的气溶胶κ的参数化方案,在小于1.1 μm和大于1.1 μm的粒径范围内的表达式分别为κreg=0.12+0.45fNH4++0.63fSO42-+0.18fWSOC和κreg=0.01+0.78fNH4++0.76fNO3-+0.8fSO42--0.28fCa2++0.14fWSOC(f为对应组分的质量份数)。两个参数化方案均能较好地预报κ,预报值κreg与κ的计算值间存在较好的相关关系,相关系数通过了置信度99%的显著性检验,且预报误差在30%范围内。   相似文献   

14.
利用京秦高速公路沿线交通气象监测站实况资料,通过对84个站次的浓雾雾生和雾消各气象要素变化特征进行分析,归纳出高速公路沿线浓雾和强浓雾天气雾生雾消的预报指标。爆发性强浓雾期间能见度少波动,在能见度爆发下降前,温度下降过程中的小幅上升对能见度突然下降有很好的指示作用;相对湿度在能见度爆发下降前1 h内达到80%以上。一般性强浓雾大多数出现在温度波动之后继续直线下降期间;在500 m浓雾出现15 h之前空气相对湿度达90%以上,能见度达50 m之前相对湿度基本达饱和状态。浓雾消散主要有两个方面,因冷空气造成的雾消,预报应着眼于冷空气前锋影响高速公路所在区域的时间;而由辐射升温造成的雾消,预报应着眼于对天空状况和升温速度的判断。  相似文献   

15.
李星敏  陈闯  董自鹏  董妍  杜川利  彭艳 《气象》2018,44(7):929-935
利用西安泾河和长安的气象观测资料、陕西秦岭大气科学试验基地气溶胶粒子谱观测资料及西安市环境保护局颗粒物质量浓度观测资料,分析了气象条件对关中颗粒物粒径谱的影响,结果表明:关中特殊的地形影响和严重的颗粒物污染是霾易发的主要原因;混合层高度与PM_(2.5)质量浓度具有较明显的负相关关系,秋、冬季混合层高度高有利于颗粒物污染的扩散。不同方向上风速变化对颗粒物浓度的影响体现了西北气流对关中颗粒物污染的扩散作用和偏东气流对颗粒物污染的输送。高相对湿度有利于稳定层结的维持和污染物集聚,当相对湿度≤80%时,粒径在150nm~1.0μm的粒子的数浓度,随着相对湿度的增大明显增加,对降低能见度、形成雾-霾有重要作用。不同粒径段粒子的数浓度随相对湿度的变化不同,对能见度的影响也不同;相对湿度越大,湿度对降低能见度的贡献越大。  相似文献   

16.
利用河北省2005年10月份的3次气溶胶飞机观测资料和宏观天气资料,综合分析石家庄地区不同天气条件下气溶胶的垂直分布和尺度谱分布特征。分析结果表明:气溶胶浓度的分布与大气环境情况密切相关。气溶胶数浓度最大值的变化范围是103~104cm-3,平均数浓度为103cm-3,粒子平均直径为0.120~0.150μm;21日近地面有霾,相对湿度为58%,近地面气溶胶浓度较17和29日略低,但粒子平均直径(0.165μm)比其余两次要大,可见相对湿度较大,大气中水汽含量较多,有利于小粒子凝结水汽,使粒子直径增大;逆温层结下,粒子在逆温层下累积,无逆温时数浓度最大值出现在近地面附近。气溶胶粒子谱呈单峰分布。  相似文献   

17.
相对湿度对大气气溶胶粒子短波辐射特性的影响   总被引:25,自引:2,他引:23       下载免费PDF全文
杨军  李子华  黄世鸿 《大气科学》1999,23(2):239-247
利用Mie散射原理和重庆实测气溶胶资料,详细计算了边界层内单个气溶胶粒子的光学特性参量,气溶胶粒子群体的散射、吸收、消光系数及不对称因子、散射比、光学厚度;进而采用二流近似和累加法计算了边界层内太阳短波辐射增温率。目的在于研究相对湿度对以上各特性参量的影响。结果表明,相对湿度在65%~95%之间变化时,对气溶胶粒子群体光学特性参数和太阳增温率的影响在量级上可与气溶胶粒子浓度成倍变化的影响相比拟。  相似文献   

18.
李星敏  董自鹏  赵奎锋  陈闯  彭艳 《气象》2022,48(5):647-657
利用2016年3月至2020年2月逐时气象和PM2.5质量浓度观测资料,依据《霾的观测和预报等级(QX/T 113—2010)》(以下简称2010行标)和《霾的观测识别》(GB/T 36542—2018)(以下简称2018国标)两种标准规定的判识方法,分析了在不同标准下陕西省霾出现频率的差异。结果表明:采用2018国标判识的霾出现频率明显多于采用2010行标的霾出现频率,若均以霾现象持续6 h及以上作为判定标准,则两者得到的霾日数相当。在80%≤相对湿度<95%时,用2018国标判识的霾出现频率比采用2010行标多,湿度越大,增加越明显;气溶胶吸湿性参数对吸湿增长后气溶胶消光系数的计算影响较大,使用2018国标时应注意该参数在各地的差异。在PM2.5≤75μg·m-3时,采用2018国标仍能识别出霾,显现出湿度对能见度的影响;在PM2.5>75μg·m-3时,当空气污染达到中度及以上时,两者差异缩小。陕西省各地市霾发生频率的月变化均呈现出“冬高夏低”的“U型”分布,...  相似文献   

19.
黄山顶大气气溶胶吸收和散射特性观测分析   总被引:5,自引:1,他引:4  
采用光声黑碳仪(PASS)2008年5~7月在黄山光明顶的连续观测资料,分析了该地区大气气溶胶吸收和散射系数变化特征及其与气象因子的关系。分析结果表明:在相对干燥的条件下(相对湿度小于60%)吸收散射系数日变化明显,总体上白天大,晚上小;相对湿度与吸收和散射系数有很强的正相关性,相关系数分别为0.87和0.80,而风速与散射吸收系数则呈现负相关关系,吸收系数、散射系数与风速的相关系数分别为-0.53和-0.78;湿清除使大气气溶胶的吸收和散射系数明显降低;与在平原地区的南京相比,黄山山顶的吸收和散射系数日变化趋势与南京相反,且数值比南京小一个量级。  相似文献   

20.
武汉作为中部地区高湿度代表城市,大气污染严重,霾天气多发,但有关该地区大气能见度与PM2.5浓度及相对湿度(RH)的定量关系尚不明确。利用2014年9月—2015年3月武汉地区逐时能见度、相对湿度及颗粒物质量浓度观测数据,研究分析了武汉大气能见度与PM2.5浓度及相对湿度的关系,并进行能见度非线性预报初探,得到以下结论:武汉霾时数发生比例高,霾的发生和加重是能见度降低的主要原因;能见度降低伴随大量细粒子产生和累积,这是武汉大气能见度恶化的重要诱因。细颗粒物浓度与相对湿度共同影响和制约大气能见度变化,高湿高浓度时能见度显著下降,湿情景下(RH≥40%),能见度恶化主要是由湿度增高诱使细颗粒物粒径吸湿增长导致其散射效率增大造成的。当RH >90%时,能见度随湿度升高成线性递减,相对湿度每升高1%,武汉平均能见度降低0.568 km。而干情景下(RH2.5质量浓度升高。在城市大气细粒子污染背景下,能见度与相对湿度成非线性关系,这主要与PM2.5对能见度的影响及吸湿性颗粒物的散射效率变化有关。PM2.5浓度与能见度成幂函数非线性关系,80%≤RH2.5浓度对能见度的影响敏感阈值是随着湿度升高而减小的,干情景下能见度10 km对应的PM2.5浓度阈值为70 μg/m3,湿情景下该阈值为18—55 μg/m3。当PM2.5质量浓度低于约40 μg/m3时,继续降低PM2.5可显著提高武汉大气能见度。预报试验表明,基于神经网络方法建立大气能见度非线性预报模型是可行的,预报能见度相关系数为0.86,均方根误差为1.9 km,能见度≤10 km的TS评分为0.92。网络模型具有较高预报性能,对霾的判别有较高准确性,为衔接区域环境气象数值预报模式,建立大气能见度精细化动力统计模型提供参考依据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号