首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
20世纪利用一维层状云模式对2002年4月4~5日河南省冷锋降水过程进行了模拟。数值模拟结果显示,此次冷锋降水属于冷云降水过程,冷锋前后云中主要以冰相粒子为主,云中水质粒自上而下的空间分布依次为冰晶、雪、云水、霰、雨水。冷锋前后,各种水质粒有着不同的含量及数密度,但形成水质粒的主要微物理过程都表现为:冰晶数密度的增加主要依靠核化、繁生,大部分雪主要靠凝华、撞冻过冷云水和冰晶增长,霰的质量增加主要靠撞冻雪、过冷云水和雪自动转化而来,大部分的雨水是由霰融化而来,因而此次冷锋降水机制表现为“水汽—雪—霰—雨水”。  相似文献   

2.
"催化-供给"云降水形成机理的数值模拟研究   总被引:21,自引:9,他引:12  
洪延超  周非非 《大气科学》2005,29(6):885-896
利用含有详细微物理过程的一维层状云模式模拟,研究了2002年4月5日冷锋降水性层状云云系中"催化-供给"云的微物理结构、降水粒子形成的环节和微物理过程,并从降水形成的环节和云的结构分析人工增雨的条件.结果说明,"催化-供给"云具有显著的分层结构:云内高层是冰晶,下层是雪,接下来是霰和过冷云水组成的冰水混合层,最下方是云中暖区的液水层.作为催化云层的冰水层对降水的贡献约25.5%,冰水混合层为31.3%,液水层为43.1%,亦即供给云对降水的贡献约74.4%.具有"催化-供给"云结构的层状云降水形成的主要环节是:冰晶通过凝华增长转化成雪,雪撞冻过冷云水、收集冰晶和凝华增长转化形成霰,霰靠撞冻过程、收集雪过程长大,从而形成可以降落到云的暖区融化形成雨水的粒子,它对降水的贡献较大.凝华和撞冻增长过程是冰粒子增长的主要物理过程,也是雨水产生的重要过程."催化-供给"云体系是重要的人工增雨条件,云中水汽对雨水形成的贡献与过冷云水几乎相当,与过冷云水一样,水汽也是人工增雨的重要条件.  相似文献   

3.
台风眼壁的云结构与降水形成机制分析   总被引:1,自引:0,他引:1  
杨文霞  赵利品  邓育鹏  胡向峰 《气象》2011,37(12):1481-1488
使用带有详细微物理过程的ARPS模式,对台风韦帕(Wipha)进行三重嵌套细网格模拟,利用模式结果,对台风眼壁强降水中心的云结构和降水形成机制进行分析,结果表明:冰相微物理过程是启动和形成台风眼壁暴雨的主要降水形成机制。在9000~14000 m高空,云水在很低的温度下经均质核化产生冰晶,或经非均质核化形成云冰;冰晶通过凝华增长(psfi,贝吉龙过程)、雨水收集云冰产生雪(praci)和冰晶粘附雨水成雪(piacr)过程生长为雪;霰产生主要包括4个过程:冰晶接触雨水使其成霰(piacr)、雪撞冻云水使其成霰(psacr)、雨水收集云冰转化成霰(praci)或雨水冻结为霰(pgfr);霰粒子通过收集云冰干增长(dgaci),霰撞冻云滴增长(dgacw)等过程生长;霰融化(pgmlt)和雪融化(psmlt)成雨水后再通过碰并云水等暖云生长过程,最后形成雨水。霰过程的强弱在雨水形成机制中很重要。(29.5°N、121.8°E)和(28.3°N、120.4°E)强降水中心冰晶转化率没有太大差别,但是(29.5°N、121.8°E)强降水中心上空冰晶通过贝吉龙过程快速成长为雪和霰,霰粒子增长过程远远强于(28.3°N、120.4°E)强降水中心,低空又有较高的云水转化率,使降水粒子在暖云中继续快速生长,冷暖云过程的有利配置使(29.5°N、121.8°E)出现较强雨水转化率。  相似文献   

4.
东北冷涡中尺度云系降水机制研究 I: 观测分析   总被引:2,自引:2,他引:0  
利用机载云粒子测量系统等仪器对2003年7月8日冷涡云系的积层混合云探测的资料,分析冷涡云系中的微物理结构、微物理过程和降水形成机制.结果表明:在4km以上高度,2-DC粒子浓度随高度快速增加,而粒子平均直径逐渐减小,粒子在下落过程中获得了增长.积层混合云中对流云在垂直方向上出现明显的分层的微物理结构:4.6km以上高度只存在针状冰晶;4.5~3.5 km高度,存在过冷水和冰相粒子.过冷水含量较高,冰相粒子除针状冰晶外,还有少量冰雪晶聚合体或霰粒子,其中在紧靠0℃层之上的3.5km高度,主要存在冰雪晶聚合体或霰粒子.在紧靠0℃层之下,粒子为椭球形,还有一些未完全融化的冰晶,再降低200 m高度,粒子完全是球形,这里完全是雨滴.降水粒子主要是雨水.云系液态水含量十分丰富,过冷水含量最大值可达3.3 g/m3,云体上部也达到2.0 g/m3.云垂直方向上微物理结构分析表明,云中冰晶除了通过冰核核化形成外,可能还存在冰晶的繁生过程.冰晶产生后通过聚并进一步长大,撞冻过冷水也是冰雪晶增长的方式之一.在云的暖区降水粒子为雨滴,其中至少有一部分是由冰相粒子(冰晶聚合体或霰粒子)融化形成.因此冷云过程参与了降水形成过程.  相似文献   

5.
唐洁  郭学良  常祎 《大气科学》2018,42(6):1327-1343
第三次青藏高原科学试验针对高原夏季云和降水物理过程开展了大量观测研究,为进一步揭示高原云微物理结构、云中水分转化和区域水分收支特征,本文采用中尺度数值预报模式(WRF)并结合高原试验期间的各种观测资料,对那曲观测试验区2014年7月5~6日的一次较为典型的夏季对流云降水过程进行了数值模拟研究。结果表明WRF模式能够基本再现高原夏季对流云的发展演变过程以及降水的日变化特征。模拟结果显示高原夏季对流云中具有较高的过冷云水和霰粒子含量,冰相过程在高原云和降水的形成和发展中具有十分重要的作用,地面降水主要由霰粒子融化产生。暖雨过程对降水的直接贡献很小,但在霰胚形成中具有十分重要的作用。霰粒子胚胎的形成主要来源于冰晶与过冷雨滴的撞冻过程,雪粒子和过冷雨水的碰冻转化及过冷雨滴的均质冻结贡献相对较小。霰粒子的增长过程在12 km(-40℃)以上层主要依靠对冰晶、雪粒子的聚并收集过程,而在其下层的增长过程主要依赖对过冷云水的凇附增长,对雪粒子的聚并收集和凝华增长过程较小。高原那曲地区净水汽收支为正,日平均降水转化率可达20.75%,接近长江下游地区,高于华北、西北地区。该地区日降水再循环率为10.92%,说明局地蒸发的水汽对高原降水的水汽来源具有一定的贡献,但高原降水的90%仍然由外界输入的水汽转化形成。  相似文献   

6.
河北一次层状云系降水的微物理机制数值模拟与分析   总被引:1,自引:0,他引:1  
利用一维层状云模式,详细分析了2009年5月1日中国中东部地区一次层状云系的微物理结构和降水过程。结果表明:此次降水为层状云系降水,云系垂直结构符合顾震潮三层概念模型和“播种云-供给云”机制,其中第一层(上层:4.7-7.0 km)存在冰雪晶,雪主要通过冰晶自动转化和凝华增长。第二层(中层:2.6-4.6 km)有冰晶、雪、霰、云水、雨滴,此层贝吉龙过程作用明显。第三层(下层:1.3-2.5 km)主要粒子为云滴、雨滴、从上层融化的雪和霰,霰的融化对于雨滴的形成贡献最大。云体发展成熟时,各层之间存在一定的播种-供应关系,如第一层向第二层顶部播撒雪和冰晶,第二层向第三层顶部播撒霰和雪。  相似文献   

7.
一次梅雨锋上MCS云微物理过程及降水形成机制   总被引:6,自引:5,他引:1  
选取2004年6月23日一次梅雨锋MCS暴雨过程,在天气分析的基础上,利用非静力中尺度模式MM5(V3.6)进行了数值模拟.对于可分辨尺度的降水,采用Reisner霰显式方案,对云内微物理过程特别是对各种水成物的源项进行了详细分析.结果表明:冷云过程是此次降水的主要云物理过程.云中以霰和雪为主要的降水元,尤其霰的作用最大.在强降水时段,雨水的主要源项都与霰有关,霰的生长过程中冰相粒子与过冷水的碰并以及霰的凝华过程最为重要.零度层上方存在着丰富的过冷水,最大的云水含量中心也在过冷层中.在过冷层中冰相粒子主要通过凝华过程和碰并过程增长,MCS发展强盛期冰晶与过冷水的碰并增长要大于液水的蒸凝过程的增长.最后给出了本次梅雨锋上MCS降水云系的三层云结构及微物理过程模型.  相似文献   

8.
台风螺旋雨带云结构和降水形成机制研究   总被引:1,自引:1,他引:0       下载免费PDF全文
杨文霞 《气象》2013,39(2):194-202
应用数值模式结果,选择台风登陆后两个不同时次螺旋雨带中两个强降水中心,对台风螺旋雨带的云结构和降水形成机制进行诊断分析.结果发现螺旋雨带云结构和降水形成机制有如下特点:在9~13 km高空范围内冰晶的非均质核化非常活跃,冰晶转化率高于台风眼壁暴雨数倍,但是冰晶通过贝吉龙过程生长为雪、雪通过凝华增长生长为霰的过程相对台风眼壁很弱,螺旋雨带雨水形成微物理机制以霰粒子融化成雨水(pgmlt)为主,冰相粒子转化率大值区位于垂直上升气流大值区,8 km高度霰收集雪(dgacs)干增长是最主要的冰相粒子生长过程,与北方层状云比较,螺旋雨带暴雨冷云中的凝华过程和撞冻过程非常活跃.螺旋雨带云水凝结过程呈双峰型,位于7~8 km高度冷云区的云水凝结峰值较大,暖云区0.5~1.5 km高度云水凝结峰值次之.  相似文献   

9.
华北层状云系人工增雨个例数值研究   总被引:4,自引:0,他引:4  
高茜  王广河  史月琴 《气象》2011,37(10):1241-1251
利用耦合了CAMS详尽云方案和非静力中尺度数值模式MM5V3的CAMS中尺度云分辨模式对2008年3月20—21日环北京地区的一次层状云系降水进行模拟和人工催化数值试验。模拟自然降水分布与实测结果一致,分析微物理特征并在所得分析的基础上进行催化试验。研究在不同催化剂量、高度进行试验对降水的影响。结果表明:在过冷水含量高且冰晶含量低的区域引入人工冰晶可使地面降水增加。引入人工冰晶后催化区域水汽明显减少,云水也有减少,冰晶粒子和雪粒子增加,而且水汽减少的量明显大于过冷云水的减少量。同时催化后550 hPa附近的下沉气流中心变为上升气流,动力、热力效应明显。雪碰并冰晶增长、冰晶转化成雪增长是催化高度附近雪晶增加的主要过程,而催化高度以下,雪碰并过冷云滴增长是雪晶增加的主要过程;雪晶碰并过冷雨滴增长是霰粒子增加的主要过程;雨滴碰并云滴增长是雨滴增长的主要过程。  相似文献   

10.
一次层状云系水分收支和降水机制的数值研究   总被引:7,自引:0,他引:7  
周非非  洪延超  赵震 《气象学报》2010,68(2):182-194
对2002年10月18—20日河南省层状云系的水分收支和降水机制用MM5模式模拟的结果表明,河南省域以外的水物质主要通过西和南边界输送到区域内,19日降水主要时段总水物质通量在水平方向上为净流入。对河南省域水汽、水凝物和总水物质的水分平衡等式中各项的估算表明该区域水物质基本达到收支平衡。估算的河南省域总水物质降水效率、凝结率、凝华率和水凝物降水效率及水汽降水效率分别约33.1%、27.7%、13.1%、69.7%和31.1%,总水物质降水效率与水汽降水效率接近是由于参与的水物质总量中水汽占绝大部分。约58.2%以上的冰晶转化为雪,超过82.1%的雪融化,不到11.1%的雪转化为霰,霰粒子几乎完全融化。冰晶通过凝华过程增长。雪主要由冰晶转化产生,凝华增长率比撞冻增长率高得多。雨水由暖云和冷云过程产生和增长,雨水碰并云水量和冰粒子融化量对雨水的贡献相近,云雨自动转化量小。可见,在主要降水时段,降水是由冷云和暖云过程共同产生的。冰粒子凝华增长对雨水的贡献最大超过35%,撞冻增长的贡献最高不足12%,可见水汽对降水粒子增长重要。催化层、冰水混合层和液水层对降水的贡献分别约为15%—27%、45%—50%和23%—38%,表明此"催化-供给"云中冰粒子在冰水混合层的增长对降水的贡献相当大。  相似文献   

11.
Summary Cloud microphysical and precipitation responses to a large-scale forcing in the tropical deep convective regime are investigated based on hourly zonally-averaged, vertically-integrated simulation data from a two-dimensional coupled ocean-cloud resolving atmosphere model. The model is forced by the large-scale vertical velocity and zonal wind observed and derived from TOGA COARE for a 50-day period. The accretion of cloud water by graupel induces growth of graupel that enhances raindrops through its melting during a weak-forcing period, whereas the large deposition rate of vapor associated with a large upper-tropospheric upward motion causes growth of snow from the conversion of cloud ice and enhancement of graupel from the accretion of snow during a strong-forcing period. The local changes of raindrops and graupel switch from the negative to positive values as the forcing strengthens in the weak-forcing case, whereas the variations of cloud hydrometeors are not sensitive to the strength of the forcing in the strong-forcing case. Phase analysis indicates that cloud water leads the surface rain rate by 1 hour. The surface rain rate can be calculated based on the conservation of vapor and cloud hydrometeors and the budget of raindrops. The vapor source and local changes of cloud hydrometeors could have impacts in the calculation of the surface rain rate. The vapor source determines the surface rain rate in the strong-forcing case whereas the cloud variations could become important in the weak-forcing case. In the budget of raindrops, the sum of the collection of cloud water by raindrops, the melting of graupel, and the evaporation of raindrops determines the surface rain rate in the strong-forcing case whereas the other rain-related microphysical processes become important in the weak-forcing case.  相似文献   

12.
In this paper, a 1-D time dependent cold cumulus chemistry model is presented. In the coldcumulus model, 4 categories of hydrometeors: cloud drops, raindrops, cloud ice crystals, graupelparticles, and 18 microphysical interactions are considered, In the chemical model, the source andsink terms for pollutants include: the complicated interactions between pollutants (gases andaerosol particles) and the hydrometeors (especially ice crystals and graupel particles), the ex-changes of chemical compounds between two hydrometeors accompanying microphysical processesand the aqueous oxidations of S (IV) to S (VI). The two models are combined to study the acidifi-cation processes in cold cumulus clouds.  相似文献   

13.
2014年夏季青藏高原云和降水微物理特征的数值模拟研究   总被引:2,自引:0,他引:2  
唐洁  郭学良  常祎 《气象学报》2018,76(6):1053-1068
为了加强对青藏高原(高原)云和降水微物理特征的深入认识,采用高分辨率中尺度数值预报模式(WRF),对第三次青藏高原大气科学试验2014年7月3-25日发生的6次不同强度云和降水过程进行了数值模拟分析。研究结果表明:(1)青藏高原夏季云和降水过程具有独特性。高原夏季对流的促发机制主要是午后高原加热造成的,云和降水具有明显的日变化。午夜后,对流性降水一般转化为层状云降水,具有明显的0℃层回波亮带,并且会产生强降水。大部分对流云云顶高度超过15 km(海拔高度),最大上升气流速度为10-40 m/s。(2)6次云过程中均具有高过冷云水含量,主要分布在0—-20℃层,冰晶含量主要分布在-20℃层以上的区域,强盛的对流云中,可出现在-40℃层以上区域;雨水集中分布在融化层之下,说明其主要依赖降水性冰粒子的融化过程;雪和霰粒子含量高,分布范围广,说明云中冰相过程非常活跃。(3)高原夏季云中水凝物的转化过程和降水的形成机理具有明显特点。霰粒子的融化过程是地面雨水的主要来源,暖雨过程对降水的直接贡献很小,但通过暖雨过程形成的过冷雨滴的异质冻结过程对云中霰胚的形成十分重要。霰粒子的增长主要依靠凇附过程以及聚并雪晶的增长过程。   相似文献   

14.
徐戈  孙继明  牛生杰  周碧  王永庆 《大气科学》2016,40(6):1297-1319
霰和冻滴是深对流降水的主要来源。由于二者密度差异造成的不同下落末速度必然会导致云微物理过程的变化以及降水时空分布的改变。我们在以色列特拉维夫大学二维轴对称对流云全分档模式的基础上,将水成物粒子从34档增加到40档,修改了霰和雪的密度,加入冻滴分档处理的微物理过程,发展了一个包括液滴、冰晶、雪、霰和冻滴更为详细的云微物理分档模式。利用改进后的模式模拟了一次理想的强对流天气过程,分析了改进模式与原模式模拟的云微物理量场以及水成物粒子的时空分布特征,模拟结果表明:(1)由于冻滴的产生,较大的下落末速度导致在云内-3℃至-8℃较早地出现了冻滴,并造成了大量的冰晶繁生。(2)冻滴形成前期,液态水中心区域位于垂直上升速度大值中心上方,形成液态水累积区;冻滴形成期,液态水累积区位于0℃层以上,雨滴冻结生成冻滴,霰与半径大于100 μm的液滴碰并生成冻滴;冻滴增长期,在垂直上升气流的支撑下,冻滴碰并过冷水增长,导致冻滴含量增大,液态水含量减小。因此,改进模式能较好的模拟冻滴的形成过程,可以将该分档处理的微物理方案耦合到三维WRF(Weather Research and Forecasting model)模式中,更深入地研究强雷暴风切变在冰雹生成过程中的作用。  相似文献   

15.
周志敏  崔春光  胡扬  康兆萍 《大气科学》2021,45(6):1292-1312
梅雨锋暴雨中的云微物理过程对降水的演变有着重要影响。本文通过WRF模式(3.4.1版本),针对2018年6月29~30日一次梅雨锋背景下的暴雨过程进行数值模拟,分别采用了Morrison、Thompson和MY云微物理参数化方案进行对比分析,结果发现:(1)三个方案模拟的背景场在天气尺度上,都与ERA5再分析资料一致,能够模拟出有利于强降水发生的环流场。云微物理过程对梅雨期暴雨的局地环流有着显著影响,不同方案存在明显差异,本次过程中,Thompson方案模拟出更强的局地环流系统变率和上升气流。三个方案的模拟降水均有所夸大,小时降水率始终大于观测值。冰相粒子融化或雨滴搜集云滴的高估可能是造成降水模拟值偏强的重要原因之一,总体来看,Morrison方案的模拟效果相对最优。(2)冰相粒子融化、雨滴搜集云滴是雨滴增长的关键源项,蒸发则是其最重要的汇项。总的来说,雨滴对云滴的搜集量大于冰相粒子融化。但上述过程在不同方案中存在空间上的差异,从而使得模拟降水的空间分布存在差异。(3)Thompson方案中,冰相粒子融化量最大,雨滴蒸发项显著大于其它两个方案,在底层表现得最为明显。同时,该方案水汽凝结效应最强,使得雨滴搜集更多云滴。该方案模拟的雨滴最多,降水最强。该方案中凝华的主要产物为雪,且其在与过冷水碰并增长过程中占主导地位,故模拟的雪最多。(4)Morrison方案中,水汽主要凝华为雪和少量霰(冰晶忽略不计);Thompson方案中水汽基本凝华为雪,其它冰相粒子极少;MY方案中,水汽主要凝华为雪和冰晶,冰晶总量略少于雪,但显著大于其它方案。(5)云滴在凇附过程中的总体贡献大于雨滴。Morrison和MY方案中,霰粒子搜集云滴增长的量均最大。Morrison方案中,其它凇附过程不同程度发挥作用,而MY方案中,其它凇附过程几乎可忽略不计。并且,霰粒子搜集云滴的增长量大于凝华过程产生的雪粒子总量。贝吉龙及凇附效应的差异,是不同方案中冰相粒子分布差异的关键原因之一。  相似文献   

16.
High-resolution numerical simulation data of a rainstorm triggering debris flow in Sichuan Province of China simulated by the Weather Research and Forecasting (WRF) Model were used to study the dominant cloud microphysical processes of the torrential rainfall. The results showed that: (1) In the strong precipitation period, particle sizes of all hydrometeors increased, and mean-mass diameters of graupel increased the most significantly, as compared with those in the weak precipitation period; (2) The terminal velocity of raindrops was the strongest among all hydrometeors, followed by graupel’s, which was much smaller than that of raindrops. Differences between various hydrometeors’ terminal velocities in the strong precipitation period were larger than those in the weak precipitation period, which favored relative motion, collection interaction and transformation between the particles. Absolute terminal velocity values of raindrops and graupel were significantly greater than those of air upward velocity, and the stronger the precipitation was, the greater the differences between them were; (3) The orders of magnitudes of the various hydrometeors’ sources and sinks in the strong precipitation period were larger than those in the weak precipitation period, causing a difference in the intensity of precipitation. Water vapor, cloud water, raindrops, graupel and their exchange processes played a major role in the production of the torrential rainfall, and there were two main processes via which raindrops were generated: abundant water vapor condensed into cloud water and, on the one hand, accretion of cloud water by rain water formed rain water, while on the other hand, accretion of cloud water by graupel formed graupel, and then the melting of graupel formed rain water.  相似文献   

17.
陈宝君  肖辉 《大气科学》2007,31(2):273-290
利用中国科学院大气物理研究所开发的三维全弹性冰雹云模式,对美国对流降水协作试验(CCOPE)期间观测的1981年8月1日雹云进行模拟,讨论在过冷雨水低含量条件下冰雹形成和增长机制及其碘化银催化效果。结果表明:(1) 自然云的模拟与观测事实一致,如最大上升气流速度、云顶高度、流场结构以及雹胚组成等。(2) 雹胚以霰为主,霰主要来自冰雪晶与过冷小水滴的碰冻,其次来自雪的积聚转化;霰、冻滴和冰雹在形成后主要靠碰并过冷云水增长。(3)人工催化试验表明,碘化银主要以凝华核(包括凝结-冻结)的作用产生大量的人工冰晶,加速了过冷水向冰晶的转化,过冷云水因而大量减少;催化后霰和冻滴的数浓度增大,对过冷云水的竞争增强,其平均尺度减小导致转化成雹的数量减少;冰雹碰冻过冷云水的增长在催化后也被削弱,导致冰雹总质量进一步减少。此外,催化后降雨量也显著减少。  相似文献   

18.
Summary A moderate snowfall event in North China is simulated using the high-resolution mesoscale model MM5. A fourfold-nest experiment, with a minimum horizontal grid size of 2 km, is run. In order to study the cloud microphysics processes associated with the snowfall, two experiments were conducted in two inner domains, one using the Goddard scheme (Goddard experiment), and the other using the Reisner scheme (Reisner experiment). The analysis focused on the comparison of the cloud microphysics processes which occurred in the experiments. It is shown that there is no implicit precipitation of cumulus parameterization in the domain of grid scale 18 km. The snowfall distribution patterns in the experiments are slightly different, but the microphysical characteristics and processes may have considerable differences between the two experiments: (1) The water substances in the cloud have cloud water, cloud ice and snow, but no rainwater and graupel in the Goddard experiment. However, the water substances in the cloud have cloud ice, snow, and graupel, but no cloud water and rainwater in the Reisner experiment. (2) The cloud ice mixing ratios in the Goddard experiment are larger than those in the Reisner experiment. (3) In the Goddard experiment, the dominant cloud microphysical processes include the growth of cloud water by the condensation of supersaturated vapor, the depositional growth of cloud ice, the initiation of cloud ice, the accretion of cloud ice by snow, the accretion of cloud water by snow, the deposition growth of snow and the Bergeron process of cloud ice. In the Reisner experiment, the dominant cloud microphysical processes include the depositional growth of cloud ice, the conversion of cloud ice to snow, the deposition of snow, and the deposition growth of graupel. (4) There is only snowfall in the Goddard experiment. Meanwhile, there is ice fall, snow fall, and graupel in the Reisner experiment. But the ice fall and graupel in the Reisner experiment is very slight and can be ignored.  相似文献   

19.
六盘山是西北重要的水源涵养林基地,干旱少雨制约了该地区农业和经济发展。作为该地区人工增雨技术研究的基础,本文利用WRF模式对2018年8月21日发生在宁夏南部六盘山区的一次降水天气过程进行了数值模拟。根据模拟结果结合实测资料,分析了造成此次强降水过程的有利环流形势场,重点讨论了山区降水云系的微物理结构以及降水形成机制。结果表明:降水是在高空槽配合低涡的动力场作用下形成的,受六盘山地形的阻挡作用,低层低涡系统移速落后于高空槽;垂直方向上云系呈现“催化—供给”的分层结构,但在云系不同部位,各层水凝物配置不同,导致冷暖云过程对降水的贡献差异;六盘山东部迎风坡降水强于西坡。霰粒子融化和云水碰并是地面降水的主要来源;碰冻过冷雨水是霰增长的主要过程。迎风坡云水层深厚,含水量高,一方面促进过冷层中霰粒子的碰冻增长过程,一方面为雨滴碰并增长提供充沛的云水条件,即同时增强了冷暖云降水过程。地形对云的发展和降水的形成有明显影响,当降低地形高度后,云水量减少,暖云过程减弱,同时也影响了霰粒子的增长过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号