首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 268 毫秒
1.
This paper describes the construction of a 0.5°×0.5°daily temperature dataset for the period of 1961- 2005 over mainland China for the purpose of climate model validation. The dataset is based on the in- terpolation from 751 observing stations in China and comprises 3 variables: daily mean,minimum,and maximum temperature.The"anomaly approach"is applied in the interpolation.The gridded climatology of 1971-2000 is first calculated and then a gridded daily anomaly for 1961-2005 is added to the climatologY to o...  相似文献   

2.
This paper describes a strategy for merging daily precipitation information from gauge observations, satellite estimates(SEs), and numerical predictions at the global scale. The strategy is designed to remove systemic bias and random error from each individual daily precipitation source to produce a better gridded global daily precipitation product through three steps.First, a cumulative distribution function matching procedure is performed to remove systemic bias over gauge-located land areas. Then, the overall biases in SEs and model predictions(MPs) over ocean areas are corrected using a rescaled strategy based on monthly precipitation. Third, an optimal interpolation(OI)–based merging scheme(referred as the HL-OI scheme)is used to combine unbiased gauge observations, SEs, and MPs to reduce random error from each source and to produce a gauge—satellite–model merged daily precipitation analysis, called BMEP-d(Beijing Climate Center Merged Estimation of Precipitation with daily resolution), with complete global coverage. The BMEP-d data from a four-year period(2011–14) demonstrate the ability of the merging strategy to provide global daily precipitation of substantially improved quality.Benefiting from the advantages of the HL-OI scheme for quantitative error estimates, the better source data can obtain more weights during the merging processes. The BMEP-d data exhibit higher consistency with satellite and gauge source data at middle and low latitudes, and with model source data at high latitudes. Overall, independent validations against GPCP-1DD(GPCP one-degree daily) show that the consistencies between BMEP-d and GPCP-1DD are higher than those of each source dataset in terms of spatial pattern, temporal variability, probability distribution, and statistical precipitation events.  相似文献   

3.
This paper demonstrates regional characteristics, a long-term decreasing trend, and decadal variations in the frequency of cold surge events based on daily mean temperature and daily minimum temperature data in mainland China from 1960 to 2008. During these 48 years, four high frequency centers of cold surge events were located in Xinjiang, central North China, northeast China, and southeast China. A main frequency peak of cold surge events occurs in autumn for the four regions and another peak is detected in spring over northeast China and southeast China. The regional pattern of cold surge frequencies is in accordance with the perturbation kinetic energy distribution in October-December, January, and February-April. The long-term decreasing trend (-0.2 times/decade) of cold surge frequencies in northeast China and decadal variations in China are related to the variations of the temperature difference between southern and northern China in the winter monsoon season; these variations are due to the significant rising of winter temperatures in high latitudes.  相似文献   

4.
As part of a joint effort to construct an atmospheric forcing dataset for mainland China with high spatiotemporal reso- lution, a new approach is proposed to construct gridded near-surface temperature, relative humidity, wind speed and surface pressure with a resolution of 1 km× 1 km. The approach comprises two steps: (1) fit a partial thin-plate smoothing spline with orography and reanalysis data as explanatory variables to ground-based observations for estimating a trend surface; (2) apply a simple kriging procedure to the residual for trend surface correction. The proposed approach is applied to observations collected at approximately 700 stations over mainland China. The generated forcing fields are compared with the corresponding components of the National Centers for Environmental Predic- tion (NCEP) Climate Forecast System Reanalysis dataset and the Princeton meteorological forcing dataset. The comparison shows that, both within the station network and within the resolutions of the two gridded datasets, the interpolation errors of the proposed approach are markedly smaller than the two gridded datasets.  相似文献   

5.
Detecting inhomogeneity in daily climate series using wavelet analysis   总被引:1,自引:0,他引:1  
A wavelet method was applied to detect inhomogeneities in daily meteorological series, data which are being increasingly applied in studies of climate extremes. The wavelet method has been applied to a few well- established long-term daily temperature series back to the 18th century, which have been "homogenized" with conventional approaches. Various types of problems remaining in the series were revealed with the wavelet method. Their influences on analyses of change in climate extremes are discussed. The results have importance for understanding issues in conventional climate data processing and for development of improved methods of homogenization in order to improve analysis of climate extremes based on daily data.  相似文献   

6.
In order to understand the role of East Asian subtropical westerly jet (EASWJ) in forecasting summer precipitation in East China, interseasonal pentad characteristics of the EASWJ and their relation to summer precipitation in East China are analyzed with the daily reanalysis data provided by National Centers for Environmental Prediction (NCEP, USA) and daily precipitation data from 714 Chinese meteorological stations during the period 1960–2009. In addition, the daily evolution of the EASWJ and objective quantification of the EASWJ are investigated for the Meiyu season over the middle and lower reaches of the Yangtze River valley. It is found that the EASWJ and summer precipitation bands in East China move simultaneously. Especially, the stationary state and northward shift of the EASWJ are closely associated with the beginning, ending and stabilization of the annually first raining season in South China and Meiyu over these reaches. Analysis on the characteristics of the EASWJ in typical (atypical) Meiyu years over these reaches shows that the EASWJ swings steadily around its climatological position in meridional orientation (with large amplitude). Numerical experiments on an example in 2005 shows that indexes proposed in this study can depict the EASWJ well and should be valuable for application in the operation.  相似文献   

7.
Using daily precipitation data from weather stations in China, the variations in the contribution of extreme precipitation to the total precipitation are analyzed. It is found that extreme precipitation accounts for approximately one third of the total precipitation based on the overall mean for China. Over the past half century, extreme precipitation has played a dominant role in the year-to-year variability of the total precipitation. On the decadal time scale, the extreme precipitation makes different contributions to the wetting and drying regions of China. The wetting trends of particular regions are mainly attributed to increases in extreme precipitation; in contrast, the drying trends of other regions are mainly due to decreases in non-extreme precipitation.  相似文献   

8.
In this paper, 1416 conventional ground-based meteorological observation stations on the mainland of China were subdivided into groups of differing spatial density. Data from each subgroup were then used to analyze variations in the tropical cyclone (TC) precipitation statistics derived from each subgroup across the mainland of China (excluding Taiwan, Hong Kong, and Macao), as well as in two regions (east China and south China) and three provinces (Guangdong, Hainan, and Jiangxi) between 1981 and 2010. The results showed that for the mainland of China, total precipitation, mean annual precipitation, mean daily precipitation, and its spatial distribution were the same regardless of the spatial density of the stations. However, some minor differences were evident with respect to precipitation extremes and their spatial distribution. Overall, there were no significant variations in the TC precipitation statistics calculated from different station density schemes for the mainland of China. The regional and provincial results showed no significant differences in mean daily precipitation, but this was not the case for the maximum daily precipitation and torrential rain frequency. The maximum daily precipitation calculated from the lower-density station data was slightly less than that based on the higher-density station schemes, and this effect should be taken into consideration when interpreting regional climate statistics. The impact of station density on TC precipitation characteristics was more obvious for Hainan than for Guangdong or Jiangxi provinces. In addition, the effects were greater for south China (including Guangxi Zhuang Autonomous region, Guangdong, and Hainan provinces) than east China (including Shandong, Jiangsu, Zhejiang, Shanghai, Fujian, Anhui, and Jiangxi provinces). Furthermore, the analysis proved that the statistical climatic characteristics began to change significantly when the station spacing was between 40 and 50 km, which are close to the mean spacing for all stations across the mainland of China. Moreover, TC areal precipitation parameters, including mean total areal precipitation and mean daily areal precipitation, also began to change significantly when the spacing was between 40 and 50 km, and were completely different when it was between 100 and 200 km.  相似文献   

9.
Before 2008,the number of surface observation stations in China was small.Thus,the surface observation data were too sparse to effectively support the High-resolution China Meteorological Administration’s Land Assimilation System(HRCLDAS)which ultimately inhibited the output of high-resolution and high-quality gridded products.This paper proposes a statistical downscaling model based on a deep learning algorithm in super-resolution to research the above problem.Specifically,we take temperature as an example.The model is used to downscale the 0.0625°×0.0625°,2-m temperature data from the China Meteorological Administration’s Land Data Assimilation System(CLDAS)to 0.01°×0.01°,named CLDASSD.We performed quality control on the paired data from CLDAS and HRCLDAS,using data from 2018 and 2019.CLDASSD was trained on the data from 31 March 2018 to 28 February 2019,and then tested with the remaining data.Finally,extensive experiments were conducted in the Beijing-Tianjin-Hebei region which features complex and diverse geomorphology.Taking the HRCLDAS product and surface observation data as the"true values"and comparing them with the results of bilinear interpolation,especially in complex terrain such as mountains,the root mean square error(RMSE)of the CLDASSD output can be reduced by approximately 0.1℃,and its structural similarity(SSIM)was approximately 0.2 higher.CLDASSD can estimate detailed textures,in terms of spatial distribution,with greater accuracy than bilinear interpolation and other sub-models and can perform the expected downscaling tasks.  相似文献   

10.
The performance of two models,Jam and Baig,based on the modified version of Gaussian distribution function in estimating the daily total of global solar radiation and its distribution through the hours of the day from sunrise to sunset al any clear day is evaluated with our own measured data in the period from June 1992 to May 1993 in Qena Egypt The results show a high relative deviation of calculated values from measured ones,especially for Jain model,in the most hours of the day,except for those near to local noon.This misfit behavior is quite obvious in the early morning and late afternoon A new approach has been proposed in this paper to estimate the daily and hourly global solar radiation This model performs with very high accuracy on the recorded data in our region.The validity of this approach was verified with new measurements in some clear days in June and August 1994.The resultant very low relative deviation of the calculated values of global solar radiation from the measured ones confirms the  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

13.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

14.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

17.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

18.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.SUBMISSIONAll submitted  相似文献   

19.
20.
《大气和海洋科学快报》2014,(5):F0003-F0003
AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) pub- lishes short research letters on all disciplines of the atmos- phere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号