首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 121 毫秒
1.
The seasonal variations of convective activities over the South China Sea(SCS)and itsneighborhood.as well as the similarities and differences of convection in the different key regionsduring the strong and weak convection years are analyzed by using the pentad data of TBB from1980 to 1993.The results show that in winter and summer the seasonal variations of the convectiveactivities are synchronous over the SCS and its neighborhood,the anomalous convection amplitudesare obviously different in different regions.The significant extents of convective activities havesomewhat seasonal differences in the strong and weak convection years.In the strong convectionyears,it is in winter,spring and autumn that the convection anomaly is more evident than that inthe normal years,however,after the summer monsoon onset the convection is sustained.stableand similar to that in the normal years.In the weak convection years.the convection weakensgreatly in each season.but the primary weakening occurs in spring.summer and autumn.Nomatter in the strong or the weak convection years.the convective activities are somewhat ofdifference in the Bay of Bengal.the Indochina Peninsula.the SCS and the Philippines.In addition.the convective activities are also different over the south and the north parts of the SCS.theconvection variation in the strong year is similar to that in the weak year over the north part of theSCS.but over the south part there are great differences.  相似文献   

2.
Based on temperature data in Guangdong in the past 50years, statistical methods are used to analyze the characteristics of temperature in spatial and temporal variation. The results show that land surface temperature warms by 0.16 °C/10a in Guangdong. The range of warming was lower than the average of nationwide and global land surface. Furthermore, the temperature has a larger increase tendency in winter and spring and coastal areas than in summer and autumn and inland areas. Climate zones move towards the north obviously. North tropical zone is expanding, south subtropical zone is reducing and central subtropical zone is relatively stable. Under the global climate warming, characteristics of climate warming in Guangdong were influenced by atmosphere general circulation, sea surface temperature and human activities etc.  相似文献   

3.
By using NCEP GODAS monthly sea surface height(SSH) and 160-station monthly precipitation data in China,the seasonal and interannual characteristics of SSH are analyzed over the tropical Pacific,and correlations between SSH and summer rainfall are discussed.The results are shown as follows:(1) The tropical Pacific SSH takes on a "V" pattern in the climatic field with an eastward opening,and it is higher in the western part(in the northwestern part) than in the eastern part(in the southwestern part).The high-value areas are more stable in the northwest,and the value range(greater than 0.8 m) is larger in spring and summer than in autumn and winter.The high-value area in the southwestern part is the largest(smallest) and more northerly(southerly) in spring(summer).SSH is higher in spring and autumn than in summer and winter over the equatorial zone.(2) The interannual anomalies of the SSH are the strongest over the tropical western and southwestern Pacific and are stronger in winter and spring than in summer and autumn.The interannual anomalies are also strong over the equatorial middle and eastern Pacific.The distribution ranges are larger and the intensities are stronger in the autumn and winter.There is a close relationship between the SSH interannual anomalies and ENSO events in autumn,winter and spring.(3) When ENSO events take place in winter,according to the simultaneous relationship among the tropic Pacific SSH,850 hPa wind fields and the summer precipitation of China,it can be predicted that the precipitation will be significantly more than normal over the south of the Yangtze River,especially over Dongting Lake and Poyang Lake region,eastern Qinghai-Tibet Plateau,Yangtze-Huai River Valley,eastern part of Inner Mongolia and less than normal over the area of Great Band of Yellow River,North China and South China in successive summers.  相似文献   

4.
Using daily rainfall data of 11 observatory stations over Shanghai for the period 1960-2007,the spatial differences of rainfall over the Shanghai region during periods with slow and rapid urbanization respectively are investigated based on spatial standard deviation of rainfall and its relative variables.Results show that spatial differences increase with the acceleration of urbanization.Spatial distributions of annual rainfall and rainstorm frequency exhibit distinct urban ’rain-island’ features during the rapid period of urbanization(1960-1983) while it is opposite in the case of slow urbanization(1984-2007).Changes in the spatial distribution of annual rainfall trends also take place during different periods.Specifically,the variation of annual rainfall exhibits consistent trends over the Shanghai region in the slow urbanization periods.However,inconsistent spatial distribution of variations has taken place over the central districts and suburbs of Shanghai during the rapid urbanization stage.Since the speeding-up of urbanization,the annual rainfall amount over central districts of Shanghai tends to increase while that in the suburbs shows a decreasing trend.In addition,as far as different seasons are concerned,the speed of urbanization exerts insignificant influences on the spatial distribution of rainfall during winter and spring.On the contrary,the rainfall during summer and autumn(especially summer) is featured with an island effect during the rapid urbanization period.  相似文献   

5.
This paper demonstrates regional characteristics, a long-term decreasing trend, and decadal variations in the frequency of cold surge events based on daily mean temperature and daily minimum temperature data in mainland China from 1960 to 2008. During these 48 years, four high frequency centers of cold surge events were located in Xinjiang, central North China, northeast China, and southeast China. A main frequency peak of cold surge events occurs in autumn for the four regions and another peak is detected in spring over northeast China and southeast China. The regional pattern of cold surge frequencies is in accordance with the perturbation kinetic energy distribution in October-December, January, and February-April. The long-term decreasing trend (-0.2 times/decade) of cold surge frequencies in northeast China and decadal variations in China are related to the variations of the temperature difference between southern and northern China in the winter monsoon season; these variations are due to the significant rising of winter temperatures in high latitudes.  相似文献   

6.
This paper investigates the interannual variation of the West Pacific Subtropical High (WPSH) intensity based on the data compiled by the Chinese National Climate Center. Monthly reanalysis data from National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) are also used to study the lead-lag relationship between WPSH intensity and surface heat flux anomalies. The three major findings are as follows: First, WPSH intensity presents good seasonal persistence, especially from winter to the ensuing summer. Persistence is more significant after 1977, especially from spring to summer, and from summer to autumn; persistence of anticyclonic anomalies are significantly better than cyclonic anomalies. Second, surface heat flux tends to present opposite anomalous patterns between the strong and weak years of the WPSH intensity, which is especially valid at the latent heat flux over the ocean. Simultaneous correlations between surface heat flux and WPSH intensity in each of the seasons are marked by similar key areas. Finally, surface heat flux from the preceding winter of a strong summer WPSH is quite similar to strong spring WPSH, but the positive anomalies over the northwest Pacific and south of Japan are notably stronger. The situations in the weak years are similar except for those over the northwest Pacific: winter surface heat flux shows negative anomalies for a weak spring WPSH, but positive anomalies for a weak summer WPSH. It is suggested that surface heat flux in the previous winter plays an important role in maintaining the WPSH intensity in the ensuing spring and summer.  相似文献   

7.
By using the NCEP reanalysis data set in 1979-1995, the fluxes of the latent heat, thesensible heat and the net long-wave radiation in the South China Sea (SCS) are expanded by meansof EOF in order to discuss the basic climatological features in the SCS. The detailed analysis showsthat the air-sea heat exchanges in different SCS regions have different seasonal variations. Themiddle and the north of the SCS are the high value regions of the air-sea heat exchanges during thewinter and the summer monsoon periods, respectively, the seasonal variations of air-sea heatexchanges in the south of the SCS are small. In addition, the proportions of different componentsin the total air-sea heat exchanges have different seasonal variations in different regions. Theresults show that the SCS monsoon and the air-sea heat exchanges in the SCS region are theaccompaniments of each other, the great difference of the sensible heat flux between the IndochinaPeninsula and the SCS before the SCS summer monsoon onset may be one of the triggers of thelatter. There maintains a high value center of the sensible heat flux before the 13th dekad, itsdisappearing time consists with that of the summer monsoon onset. It means that as far as the SCSlocal conditions are concerned, the northwest of the Indochina Peninsula is probably a sensitiveregion to the SCS summer monsoon onset and the land may play a leading role in the SCS summermonsoon onset.  相似文献   

8.
LONG-TERM VARIATIONS OF FOG AND MIST IN MAINLAND CHINA DURING 1951-2005   总被引:1,自引:1,他引:0  
Fog is an important indicator of weather. Long-term variations of fog and mist were studied by analyzing the meteorological data from 743 surface weather stations in mainland China during 1951-2005. In climatology, there are more foggy days in the southeast than in the northwest China and more in the winter half of the year than in the summer half. The decadal change of foggy days shows regional variation. Southwest China is the region with the most foggy days, and more than 20 foggy days occur in Sichuan Basin in one year. Persistent heavy fog usually appears in winter and spring over the North China Plain and Northeast China Plain. Misty days are much more frequent in the provinces south of the Yangtze River than in the regions north of it, and there is an obvious increase of misty days after the 1980s. Southwest China is the area with the most number of misty days, and more than 100 misty days occur in Sichuan Basin in a year.  相似文献   

9.
In this paper,based on the data at 70 stations selected evenly over China for 31 years from1961—1991.three methods to estimate climatic noise have been discussed and then the climaticnoise and potential predictability of monthly precipitation(January.July.April and October)havebeen examined.The estimating of climatic noise is based on the method of Madden and improvedmethods of Trenberth and Yamamoto et al.(1985).The potential predictability is approximatedby the ratio of the estimated interannual variation to the natural variation.Generally.the climaticnoise of monthly precipitation over China has obvious seasonal variation and it is greater in summerthan in winter,a bit greater in autumn than in spring.In most areas,the climatic noise isprominently decreasing from south to north and from coast to inland.The potential predictabilityof monthly precipitation also has obvious seasonal and regional difference,but the potentialpredictability is greater in winter than in summer in most parts of China.Whereas the comparisonof spring and autumn is not obvious.Comparing with the method of Madden,the estimated valuesof climatic noise based on the improved methods of Trenberth and Yamamoto et al.are relativelylower.  相似文献   

10.
We present mobile vehicle lidar observations in Tianjin, China during the spring, summer, and winter of 2016. Mobile observations were carried out along the city border road of Tianjin to obtain the vertical distribution characteristics of PM_(2.5). Hygroscopic growth was not considered since relative humidity was less than 60% during the observation experiments. PM_(2.5) profile was obtained with the linear regression equation between the particle extinction coefficient and PM_(2.5) mass concentration. In spring, the vertical distribution of PM_(2.5) exhibited a hierarchical structure. In addition to a layer of particles that gathered near the ground, a portion of particles floated at 0.6–2.5-km height. In summer and winter, the fine particles basically gathered below 1 km near the ground. In spring and summer, the concentration of fine particles in the south was higher than that in the north because of the influence of south wind. In winter, the distribution of fine particles was opposite to that measured during spring and summer. High concentrations of PM_(2.5) were observed in the rural areas of North Tianjin with a maximum of 350 μg m–3 on 13 December2016. It is shown that industrial and ship emissions in spring and summer and coal combustion in winter were the major sources of fine particles that polluted Tianjin. The results provide insights into the mechanisms of haze formation and the effects of meteorological conditions during haze–fog pollution episodes in the Tianjin area.  相似文献   

11.
The seasonal variations of convective activities over the South China Sea(SCS) and its neighborhood.as well as the similarities and differences of convection in the different key regions during the strong and weak convection years are analyzed by using the pentad data of TBB from 1980 to 1993.The results show that in winter and summer the seasonal variations of the convective activities are synchronous over the SCS and its neighborhood,the anomalous convection amplitudes are obviously different in different regions.The significant extents of convective activities have somewhat seasonal differences in the strong and weak convection years.In the strong convection years,it is in winter,spring and autumn that the convection anomaly is more evident than that in the normal years,however,after the summer monsoon onset the convection is sustained.stable and similar to that in the normal years.In the weak convection years.the convection weakens greatly in each season.but the primary weakening occurs in spring.summer and autumn.No matter in the strong or the weak convection years.the convective activities are somewhat of difference in the Bay of Bengal.the Indochina Peninsula.the SCS and the Philippines.In addition.the convective activities are also different over the south and the north parts of the SCS.the convection variation in the strong year is similar to that in the weak year over the north part of the SCS.but over the south part there are great differences.  相似文献   

12.
利用1998—2013年热带测雨卫星(TRMM)3A12资料,对南海及其周边地区降水、云和潜热的三维特征及其变化进行了对比研究,把南海及其周边地区分为四个区域:华南地区、中南半岛、马来群岛、南海。结果表明:(1)地面降水率EOF分析的第一、二模态方差贡献率分别为57.16%和8.72%,第一模态向量场均为正值,降水呈现南多北少的分布特征;第二模态向量场体现了降水变化南北反相的特征,马来群岛降水变化与其他三个区域反相。从两个模态时间系数序列看出,1998—2005年整个区域降水总体减少,区域降水北部增多南部减少;2005—2013年整个区域降水总体增多,区域降水南部增多北部减少。(2)南海及其周边地区降水夏秋季多,春冬季少,降水中心春夏季北移,秋冬季南撤,其中马来群岛夏季降水最少,冬季最多;其它三个区域都是夏季降水最多,华南和中南半岛冬季最少,南海春季最少。(3)赤道附近对流降水为主,23 °N以北区域层云降水为主,5~23 °N之间区域两种类型降水比例随季节变化,其中陆地降水比例随季节变化明显,特别是华南地区陆地夏季对流降水比例大于50%,冬季层云降水比例大于80%;海洋对流降水所占比例普遍大于50%,随季节变化小。(4)云冰、云水含量水平分布大值区与降水大值区相对应;二者随高度先增加后减少,云冰在13 km高度达到最大值,云水在2.5 km高度达到最大。春冬季,马来群岛云冰含量最大;夏秋季,南海云冰含量最大。云水含量在四个季节都以南海最大。(5)潜热加热率水平分布大值区与降水大值区相对应;随高度呈双峰分布,峰值分别出现在1~2 km高度和4 km高度处,春冬季马来群岛潜热加热率最大。   相似文献   

13.
湖北省近50年气候变化特征分析   总被引:23,自引:5,他引:23       下载免费PDF全文
本文应用1951-2000年的逐月平均气温和降水量资料,分析了湖北省5个代表站的年、季、月气温与降水的变化情况,结果表明,近50年湖北省各地气候变化的地域性,季节性差异较大,省内中、东南部在冬、春季增暖明显,西部,北部在夏、秋季变冷较显著,降水量的变化趋势各地差异明显。  相似文献   

14.
利用农业气象站观测资料对长江中下游地区1988-2010年遥感土壤湿度进行了验证,并与NCEP和ERA-Interim土壤湿度做了对比分析。研究表明,ECV遥感土壤湿度冬季平均土壤湿度最高,春季和秋季次之,夏季平均土壤湿度最低;这种季节性干湿变化与农业气象站观测资料一致。但是,NCEP和ERA-Interim土壤湿度再分析资料,则夏季平均土壤湿度高,春季和秋季次之,而冬季平均土壤湿度最低;这种季节性变化与ECV遥感土壤湿度和农业气象站观测资料呈反位相。就年际变化而言,ECV遥感土壤湿度与农业气象站观测资料和两套再分析资料均有较高的一致性,并在春季和秋季最高,尤其是在长江以北地区和长江以南洞庭湖、鄱阳湖两大湖区,相关系数达到0.7~0.9;而夏季一致性最低,相关系数仅为0.4左右。在研究时段,ECV土壤湿度在冬季明显增加,在夏季则有明显下降趋势。  相似文献   

15.
利用山东省122个国家级地面气象观测站的风速数据与欧洲中期天气预报中心(ECMWF)提供的ERA- Interim再分析数据,采用小波分析、带通滤波等方法对2015年9月—2020年9月山东的大风天气及相应的低频大气环流形势进行分析。结果表明,近几年山东的大风天气有増加的趋势,春季大风发生频次最多,秋季最少;山东半岛东部大风频次最多,鲁南地区最少;全年只有7月偏南大风站次较偏北大风多,其余月份多以偏北大风为主。山东大风具有显著的11~13 d与20~23 d的低频振荡周期。其中,春季大风以11~13 d的振荡周期为主,秋、冬季以20~23 d的振荡周期为主,夏季大风的振荡周期不明显。振荡周期的演变与大范围的大风过程有对应关系,大范围的大风过程大致发生在振荡的波峰处。春季偏北大风盛行时,多伴有经向风自北向南的传播。秋季大约以35°N为界,对流层中高层在35°N以北,经向风自南向北传播,35°N以南,则是自北向南传播,对流层中低层反之。山东春季大风产生之前,乌拉尔山东侧低频气旋与黄海上空低频反气旋同时出现并东移,之后衍生出华北低频反气旋与渤海低频气旋,这两个系统的加强促使华北上空偏北风加大,为山东大风的产生提供了可能。同时,华北地区经向风正距平逐渐被负距平所代替,是山东大风天气产生的又一先兆。  相似文献   

16.
1964—2005年辽宁第一对流层顶温度变化特征分析   总被引:3,自引:1,他引:2  
利用趋势分析、突变分析及小波分析方法对1964—2005年辽宁南部(大连)和北部(沈阳)第一对流层顶温度特征进行分析和比较。结果表明:近42 a,对于辽宁地区第一对流层顶温度,年、夏秋季平均值均呈升高趋势,春冬季平均值呈弱下降趋势;多年平均值的年变化表现为北部夏季最高、春季最低,南部秋季最高、春季最低;南部年、季的年际变化幅度均大于北部;年际变化幅度在南部夏季最大、春秋季次之、冬季最小,在北部夏季最大、冬季次之、春秋季差异不大;发生突变时段春夏季南部滞后于北部。在春季存在着3 a,6 a和18 a周期,其他季节周期变化南部较北部明显。  相似文献   

17.
辽宁地区第一对流层顶高度变化特征分析   总被引:2,自引:1,他引:1       下载免费PDF全文
本文利用趋势分析、突变分析以及小波分析等方法对近42 a辽宁南部(大连)和北部(沈阳)第一对流层顶高度变化特征进行分析和比较,结果表明:近42 a,辽宁第一对流层顶高度除冬季以外其它三季和年呈下降趋势,南部地区的降幅明显大于北部;多年均值的年变化表现为在夏季最高、春秋季次之、冬季最低,各个季节南部高度值普遍高于北部;年际变化幅度在夏季最大,除冬季外,南部大于北部;发生气候突变的时段基本上都在1970年代中期前后;周期变化特征时空差异较大。  相似文献   

18.
利用2013年7月1日—2014年6月30日鄱阳湖东岸70 m铁塔的涡动相关观测资料,统计分析了风、温度、通量足迹的分布,重点分析了湍流通量的变化及其影响因素,结果表明:1)鄱阳湖地区夏季主要以南风、西南偏南风和东南偏南风为主,冬季风向多变,主要以西北风、西北偏北风等偏北风为主.秋季风速较强,春季次之,夏季最小.通量足迹在南、北方向密集,在西南和东北方向稀疏.2)动量通量表现为夏、秋季较大,冬、春季较小.感热通量表现为秋季最大,春季次之,夏季最小;秋季整体的变化幅度都较大,夏季整体较小.潜热通量夏季最大,冬季最小;潜热通量夏季整体的变化幅度较大,冬季整体较小.3)随着下垫面粗糙度的增大,摩擦速度和动量通量显著增大.潜热通量与水的相变密切相关,来自湖面的潜热通量较大,而来自陆地的较小;感热通量与大气稳定度有关,在稳定状态时为负,在不稳定状态感热通量显著增大.  相似文献   

19.
Based on daily precipitation data from 524 meteorological stations in China during the period 1960–2009, the climatology and the temporal changes (trends, interannual, and decadal variations) in the proportion of seasonal precipitation to the total annual precipitation were analyzed on both national and regional scales. Results indicated that (1) for the whole country, the climatology in the seasonal distribution of precipitation showed that the proportion accounted for 55 % in summer (June–August), for around 20 % in both spring (March–May) and autumn (September–November), and around 5 % in winter (December–February). But the spatial features were region-dependent. The primary precipitation regime, “summer–autumn–spring–winter”, was located in central and eastern regions which were north of the Huaihe River, in eastern Tibet, and in western Southwest China. The secondary regime, “summer–spring–autumn–winter”, appeared in the regions south of the Huaihe River, except Jiangnan where spring precipitation dominated, and the southeastern Hainan Island where autumn precipitation prevailed. (2) For the temporal changes on the national scale, first, where the trends were concerned, the proportion of winter precipitation showed a significantly increasing trend, while that of the other three seasons did not show any significant trends. Second, for the interannual variation, the variability in summer was the largest among the four seasons and that in winter was the smallest. Then, on the decadal scale, China experienced a sharp decrease only in the proportion of summer precipitation in 2000. (3) For the temporal changes on the regional scale, all the concerned 11 geographic regions of China underwent increasing trends in the proportion of winter precipitation. For spring, it decreased over the regions south of the Yellow River but increased elsewhere. The trend in the proportion of summer precipitation was generally opposite to that of spring. For autumn, it decreased over the other ten regions except Inner Mongolia with no trend. It is noted that the interannual variability of precipitation seasonality is large over North China, Huanghuai, and Jianghuai; its decadal variability is large over the other regions, especially over those regions south of the Yangtze River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号