首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
基于2019年1月~2020年12月西南地区东部大官山降水观测数据,分析了降水随海拔高度的变化特征。结果表明:2019~2020年,大官山降水量总体随海拔升高而增大,多年平均梯度变化率为1.32%/100 m,最大降水高度在海拔1900 m左右。各季降水梯度变化率中,夏、秋季高,冬、春季低,夏季为3.31 mm/100 m,秋季为1.39 mm/100 m,冬季为0.50 mm/100 m,春季为0.67 mm/100 m。各月降水梯度变化率中,7月最高,达5.06 mm/100 m,1月和11月最低,分别为0.23 mm/100 m和0.29 mm/100 m。降水日数和小雨日数随高度的线性变化趋势较明显,平均上升率分别为2.86 d/100 m和2.56 d/100 m。大雨日数在海拔1900 m左右最大,暴雨日数在海拔2500 m左右最大。降水日变化表现出多峰值特征,降水量和降水强度均在06~09时达到最大,降水频率也随海拔高度升高而增大,其中,高海拔降水频率在15时左右达到最大。降水随海拔高度的变化与天气过程密切相关,持续阴雨天气过程降水量的梯度变化较为平缓,暴雨天气过程降水量随海拔的升高而升高,局地阵雨中单次过程降水量与海拔高度相关性不明显。   相似文献   

2.
利用广东省86个常规气象观测站1961—2010年的逐日降水资料,分析近50年广东省降水气候特征,探讨不同等级降水空间分布及随时间变化特征。结果表明:广东省降水丰沛,年均降水量多为1 500~2 000 mm;降水气候特征的区域差异较大,不同区域降水量与降水日数分布差异显著;各月的降水日数差异没有降水量月分布的差异明显,非汛期的日降水量较小,而汛期降水日数多且日降水量大;小雨日和中雨日的区域差异小,大雨日、暴雨日、大暴雨日的大值中心主要集中在广东省的三大暴雨中心地区 (清远中心、阳江中心、海陆丰中心),雨日量级分布大致由北向南逐渐增强,且随着降水等级的增加降雨日数迅速减少;小雨、中雨和大雨的降水贡献率均由粤北地区向沿海地区递减,暴雨和大暴雨的贡献率由粤北向沿海递增;小雨日数显著减少、大雨以上日数略有增多,总降水日数也呈减少趋势;小雨和中雨的贡献率呈减少趋势,大雨以上贡献率增多,使年均降水量呈增多趋势。   相似文献   

3.
近53年江淮流域梅汛期极端降水变化特征   总被引:6,自引:2,他引:4  
杨玮  程智 《气象》2015,41(9):1126-1133
基于1961—2013年江淮流域梅汛期(6—7月)逐日降水资料,利用百分位法确定极端降水阈值,对江淮流域梅汛期极端降水的时空分布及突变特征进行分析,结果表明:95%分位极端降水阈值多在50 mm以上,大值中心主要位于湖北东部到安徽南部一带;平均极端降水强度与阈值大小的空间分布相似。极端降水量和极端降水日数整体呈现由安徽南部向四周递减的空间分布特征,极端降水量约占梅汛期降水总量的1/4~1/3。从季节内分布上看,极端强降水站次在梅汛期呈单峰型分布,各候间差异明显,其中6月第5候到7月第2候最多。极端降水量、极端降水日数以及极端降水量占梅汛期总降水量百分比均具有明显的年际变化,且上升趋势显著;江淮流域梅汛期极端降水量和极端降水站次的这种上升趋势均在1980年发生突变。  相似文献   

4.
利用北江流域15个气象台站1965~2010年逐月降雨量资料,统计分析了北江流域汛期降雨量的气候变化特征,结果表明:北江流域汛期、前汛期、后汛期以及各月年平均降雨量空间分布非常一致,多雨区位于流域西南部,少雨区位于东北部,多雨区处于迎风坡的南侧;流域降雨量峰值出现在5月,7月有明显下降的特征。汛期降雨量呈略增加的趋势,这与广东汛期降雨量趋势是一致的,其中流域北部呈增加趋势,南部呈减少趋势;前汛期降雨量呈减少趋势,后汛期呈增加趋势。汛期降雨量年代际变化的整体波动较明显,20世纪60、80年代降雨量为负距平,70、90年代和2001年后为正距平,呈“少-多-少-多-多”趋势,强降水期有“6月-5月-6月”先前移后后推的趋势。汛期降雨量变化趋势不明显,在1984年有一次突变,到1992年呈减少趋势,1985—1992年降雨量平均值比其余年份平均值减少了18%。  相似文献   

5.
以吐鲁番5个国家气象站近55 a(1960—2014年)与26个区域气象站近3 a(2013—2015年)逐小时降水资料为基础,利用Pearson相关分析、气候倾向率、Mann-Kendall突变分析、Morlet小波分析等方法,分析了吐鲁番地区暖季降水时空分布特征,并就地形对吐鲁番降水的影响进行了量化研究。结果表明:在新疆趋暖趋湿的气候背景下,吐鲁番盆地平原区和山区存在截然不同的降水时空变化特征,吐鲁番地区降水高度集中在暖季,且暖季山区降水集中度和稳定性更好;暖季盆地内存在频率55%的夜雨区和昼雨区,盆地西南坡地和腹地平原区为夜雨区,盆地北部天山山区降水则集中在午后,海拔高度大约每增加(减少)300 m,降水集中时段提前(延后)1 h。研究还表明,吐鲁番降水与地形关系密切,海拔高度是影响吐鲁番降水的决定性因素,其暖季降水量、降水时数均与海拔高度呈显著正相关,降水量增加的主要原因是降水时数随海拔高度的递增;降水量随海拔高度的变化呈二次曲线型,其最大降水高度为1900 m;在最大降水高度以下,降水量由盆地腹地的平原区向山区递增,降水垂直变率平均为6.2 mm/100 m,其中1500~1900 m高度是降水量与降水垂直变率最大的区域,降水垂直变率达20 mm/100 m。  相似文献   

6.
利用东江流域13个气象观测站1967—2011年的逐月降水量资料,对流域内汛期降水量的时空分布非均一性进行了分析。结果表明:流域内汛期各时段降水量无明显增加趋势,年际、年代际变化明显;降水量的时空间分布与其均方差均呈显著的正相关关系;各时段降水量的站间偏度系数和各站偏度系数均以正偏为主,峰度系数多为负值,且站间偏度和峰度系数皆具有明显的年代际变化特征;汛期各时段降水量均有88.9%的年份在空间上服从正态分布;汛期有95.6%的气象站降水量服从正态分布、前汛期和后汛期有93.9%的气象站降水量服从正态分布。未能通过正态性检验的年份和站点,多是由于偏度系数不能满足条件。  相似文献   

7.
黄河兰州上游流域近4a汛期降水变化特征   总被引:1,自引:0,他引:1  
利用2015—2018年5—9月黄河兰州上游地区327站小时降水资料,定义了降水过程次数等特征量,分析该地区7个流域汛期降水变化特征。结果表明:(1)黄河兰州上游流域汛期降水量与降水日数有很好的一致性,以2018年最多,2015年最少;空间分布上都是青海东南部的龙羊峡以上流域最多,甘肃中部的刘家峡—兰州流域最少。(2)同一流域由于地理位置和流域面积大小不同等原因,各支流降水日数差异较大,特别是龙羊峡以上流域和洮河流域表现最为明显。(3)流域内降水次数日变化特征有双峰单谷型、单峰单谷型和平缓型三种形态;降水总次数、小时平均降水量大于2 mm的次数、小时最大降水量大于20 mm的次数一天中都是在傍晚后增多,且强降水出现时间多发生在19:00左右。(4)近4 a中流域内最大降水过程出现在大夏河流域,持续时间最长的降水过程在湟水河流域,小时降水量最大出现在大夏河流域。  相似文献   

8.
利用西藏雅鲁藏布江流域6个代表站降水资料,研究了雅江流域近53年的夏季降水量变化特征。主要结论包括:1963~2014年雅江流域6个站各站年平均降水量在286.2~447.9mm,夏季(6~8月)平均降水量在221.4~355.4mm,占年降水量的71%~85.5%。年最大降水量出现在拉萨,其次是日喀则和泽当,位于雅江偏西段的定日和江孜降水量最少;夏季降水量空间分布特征与年降水量的分布特征基本一致。雅江流域年降水量存在显著的年际和年代际变化特征,降水总量呈增多趋势。夏季降水量对年总降水量的贡献最大,占年降水总量的77%。夏季(6~8月)降水量变化与年降水量的变化趋势一致,即总体呈增多趋势。拉萨、定日、日喀则、浪卡子夏季降水量的变化趋势与雅江流域整体趋势特征一致,其中拉萨最明显,而泽当和江孜降水量呈减少趋势。雅江流域夏季降水量在1998年出现了明显突变,21世纪以来的十几年内存在短时间的突变现象。雅江流域夏季降水量主要存在2~4a和7~8a的变化周期。   相似文献   

9.
利用2015—2018年5—9月白龙江流域甘肃段140个气象站小时降水资料,定义流域降水过程次数等特征量,分析该流域汛期降水变化特征。结果表明:(1)白龙江流域甘肃段汛期平均降水量逐年增加,近4 a汛期平均降水量分布与逐年分布在空间上相似,均为下游的广坪河支流最多,短时强降水主要集中在白龙江主河道上。(2)流域内平均降雨日数与平均降水量的空间分布不对应,降雨日数多的年份各支流降雨日数分布较均匀,降雨日数少的年份则各支流间差异较大。(3)流域内各支流的平均降水量、降雨日数与短时强降水在空间分布上并不一致。(4)流域内白天出现降水的次数小于夜间,01时出现最多;各支流降水出现次数夜间多于白天,以22—23时、03—04时这两个时段最多;流域内短时强降水天气在21时出现最多。(5)流域内的最大降水过程的累计雨量、持续时间及小时最大降水量随着季节变化明显。5、6月累计雨量不大,持续时间较长,小时降水量较小;7、8月累计雨量大,持续时间较短,小时降水量较大;9月累计雨量较大,持续时间长,小时降水量小。  相似文献   

10.
利用柴达木盆地11个国家气象站(2017年3月—2018年2月)及28个区域气象站(2017年6—8月)月降水量资料,运用线性回归订正法和比值订正法推算柴达木盆地的年降水量,进一步分析柴达木盆地降水量季节变化及空间分布特征。结果表明:(1)柴达木盆地降水量年内分配极不均匀,呈单峰性,峰值出现在7月,5—9月(汛期)降水量占全年的87.4%。季节差异非常明显,降水主要集中在夏季;(2)年降水量空间分布特征:柴达木盆地年降水量各地差异极为显著,降水量整体表现为从东向西逐渐减少。最大值出现在天峻,最小值出现在冷湖。用2种方法推算的年降水量最大值出现在柴达木盆地东北部祁连山南麓的木里镇,其次在格尔木市南部出现了两个相对的大值中心,中间区域(93°~97°E)由四周山区向盆地中心逐渐减少的形势表现得更加清晰。夏季降水量的空间分布与年降水量的空间分布完全一致。(3)国家气象站模型中降水量分布只受经度和海拔高度的影响,而线性回归法和比值订正法模型中降水量的分布不仅受经度和海拔高度的影响,还受纬度的影响,三者的贡献率由大到小的排序是经度海拔高度纬度。  相似文献   

11.
基于NECP/NCAR再分析资料和四川省38个站点降水资料,结合长周期旱涝急转指数,分析了四川省夏季旱涝急转的时间演变特征及其与典型年份大气环流的联系。结果表明:1)四川省夏季旱涝急转指数年际变化差异较大,旱转涝事件多于涝转旱事件,但发生旱转涝事件的可能性和强度降低,而涝转旱年强度更强;2)旱转涝年的旱期与涝转旱的涝期相比,前者西太平洋副高位置偏西、偏强,不易将南海及西太平洋的水汽输送到四川,降水偏少偏旱,而后者中高纬槽脊波动剧烈,在高原东南侧低值系统与副高的配合下,有利于暖湿气流向北输送,在四川地区形成降水;而旱转涝年涝期与涝转旱年旱期相比,环流经向运动偏强,中高纬槽脊波动明显,有利于中高纬冷空气南下与低纬北上的暖湿气流相遇形成降水,降水偏多偏涝。  相似文献   

12.
河南省汛期降水的天气季节特征   总被引:1,自引:0,他引:1  
通过多年汛期逐日降水量场的EOF分析,探讨了河南省汛期降水的天气季节特征。河南省主汛期出现在江淮梅汛之后,称暑汛较合适。暑汛期降水出现明显的南北与东西方向上的反相振荡;尤其是从小暑到大暑,季风雨带从沙河以南,北跃到黄河沿岸及其以北地区,是东亚季风重要的气候特征,表明梅雨结束后,中国东部的主要雨带不是一跃而至黄河以北,而是阶段性地逐次向北跳跃的。对暑汛降水气候的分析研究,有助于加深对东亚季风活动的认识  相似文献   

13.
黄河流域冬、夏季水汽输送及收支特征   总被引:1,自引:0,他引:1  
李进  李栋梁  张杰 《高原气象》2012,31(2):342-350
利用NCEP/NCAR再分析资料和我国实测雨量资料,对黄河流域1月和7月多年平均及旱、涝年整层积分的水汽通量、辐合(辐散)及各分区水汽收支进行了研究。结果表明,1月黄河流域无明显的水汽输送,而7月水汽沿西南、东南及西北3条路径输送,前两支气流在多年平均时主要影响黄河下游区。涝年时影响到黄河中、下游区,而上游区水汽流入较小;旱年,黄河中、上游区均无明显的水汽输送,只有下游的小范围地区受西南气流影响。各区净水汽通量分别与其地面降水的时空演变相对应,而经向净水汽通量是影响水汽收支变化及供给流域降水的主要水汽来源;涝年的水汽净收支与各边界水汽流入明显大于旱年。1月,西边界和北边界微弱的水汽输入远小于东边界和南边界的输出,各区均为水汽净辐散,不利于降水;7月,大量的水汽主要来自西边界和南边界,涝年各区均为水汽盈余,多年平均也以净辐合为主,而旱年则以水汽亏损为主。  相似文献   

14.
The characteristics and possible causes of changes in persistent precipitation(PP) and non-persistent precipitation(NPP) over South China during flood season are investigated using daily precipitation data from 63 stations in South China and NCEP/NCAR reanalysis data from 1961 to 2010. This investigation is performed using the Kendall's tau linear trend analysis, correlation analysis, abrupt climate change analysis, wavelet analysis, and composite analysis techniques. The results indicate that PP dominates total precipitation over South China throughout the year. The amounts of PP and NPP during flood season vary primarily on a 2–5-yr oscillation. This oscillation is more prominent during the early flood season(EFS; April–June). NPP has increased significantly over the past 50 years while PP has increased slightly during the whole flood season. These trends are mainly due to a significant increase in NPP during the EFS and a weak increase in PP during the late flood season(LFS; July–September). The contribution of EFS NPP to total flood season precipitation has increased significantly while the contribution of EFS PP has declined. The relative contributions of both types of precipitation during LFS have not changed significantly. The increase in EFS NPP over South China is likely related to the combined efects of a stronger supply of cold air from the north and a weaker supply of warm, moist air from the south. The increase in NPP amount may also be partially attributable to a reduction in the stability of the atmosphere over South China.  相似文献   

15.
2018年主汛期我国平均降水量为652.0 mm,较常年同期偏少95.0 mm。空间分布上呈现出北方降水偏多,南方降水偏少的总体特征。其中华南地区前汛期降水量较常年偏少5—8成, 江淮地区梅雨季降水量较常年偏少4—8成,华北地区降水量较常年偏多2—8成,局地偏多2倍以上。除华北雨季开始时间较常年偏早外,华南前汛期、江淮梅雨期开始时间均较常年偏晚。2018年主汛期全国平均降水日数71.29d,较常年偏少12.67d。共出现暴雨5229 站日,较常年偏少280站日。华南前汛期降水阶段性明显,中前期冷空气较弱,副高异常偏强是降水偏少的重要原因,后期南海季风爆发,水汽条件明显改善,中高纬度环流经向度增大,降水明显增强;江淮梅雨期间,长江中下游地区高层辐散抽吸的动力条件以及低层水汽辐合均较常年同期偏弱,是梅雨期降雨强度整体偏弱、梅期偏短的重要原因。华北雨季期间,东北亚稳定维持着一个异常反气旋环流,在中纬度地区形成东高西低的环流形势,是华北地区出现强降水的重要原因之一。2018年汛期全国共出现34次区域性暴雨过程,区域性暴雨过程的次数与常年同期基本持平或略偏少,全国暴雨站日也较常年同期略偏少。  相似文献   

16.
四川盆地是我国夜雨发生频次最高的地区,夜间暴雨是夜雨中可致灾并加剧防范难度的一类特殊气象灾害,但以往对四川山地夜间暴雨精细特性的相关研究较少。利用四川省2010—2019年2 165个国家及区域气象站逐小时降水资料,分区统计了四川暖季(5—9月)暴雨日夜间降水占日降水量的比例、夜间暴雨频次和夜间平均暴雨强度的基本特征,并通过趋势分析和地理加权回归等统计方法,分析了其空间分布及其与海拔高度的关系,获得以下结果:(1)四川暴雨日夜间降水占日降水量比例呈现自南向北递减的趋势,以海拔2 800 m为分界,表现为随海拔高度升高呈先增大、后减小的垂直分布特征,川西南山地与其他山地区域整体上升的变化趋势明显不同。(2)夜间暴雨频次较多的测站沿川西与川西南山地陡峭地形呈线性分布,夜间暴雨频次随海拔高度升高总体呈现减小的特征,川西山地和川西南山地的频次最大值分别出现在海拔800 m和500 m。(3)四川夜间平均暴雨强度整体随海拔的升高而减小,大值区主要位于川西山地和川东北山地,海拔700 m高度处的峰值强度主要由川西山地贡献。(4)川西山地夜间暴雨特征呈次数较多且每次强度大,川西南山地夜间暴雨为次数多但单次降水量较小,而川东北夜间暴雨的强度较大但次数较少。以上结果有助于深化对山地夜间暴雨精细特征的认识。  相似文献   

17.
利用日降水资料(08—08时)和常规天气图资料,以1981—2010年30 a平均降水量为气候态,统计2012年4—10月我国主要暴雨天气过程,概述各主要暴雨过程的重要影响系统、出现时段、范围及累积降水量。结果表明:2012年4—10月我国共出现190个暴雨日,34次主要暴雨过程,单站最大日降水量487mm,过程最大降水量631mm;4月华南、江南大暴雨过程比常年偏多,7月中下旬长江流域强降水频繁,长江三峡出现建库以来最大洪峰;汛期登陆我国的台风偏多且时间集中,北上台风偏多;汛期北方降水量比常年偏多,多个大中城市出现严重内涝。  相似文献   

18.
With rainfall data of 51 stations in April-September in the Pearl River basin during 1954-2003, we have applied the Principal Component Analysis method to research the spatial distribution characteristics of April-September rainfall. The results reveal the following. In the Pearl River basin, there is different precipitation varying from 600 mm to 1900 mm in April-September and precipitation decreases gradually from southeast to northwest. The standard deviation distribution decreases gradually from east to west on the whole. The rainfall distribution of the Pearl River basin has five main types Type Ⅰthere is flood (drought) in the whole region, Type Ⅱ there is flood (drought) in the north and drought (flood) in the south, Type Ⅲ there is flood (drought) in the east and drought (flood) in the west, Type Ⅳ there id flood (drought) in the central part and drought (flood) in the east and west, and Type Ⅴ there is flood (drought) in center and drought (flood) in north and south. The types of the flood (drought) in the whole region and flood (drought) in the north and drought (flood) in the south appear much more than the others,being 64% of the total. From the 10-year moving average, it is seen that rainfall between April and September in the Pearl River basin region is mainly dry in 1983-1992, and mainly dry in the east and wet in the west in 1967-1971 and wet in the east and dry in the west in 1979.  相似文献   

19.
2021年10月3—6日,我国北方地区经历了历史罕见的持续性极端强降水过程,暴雨中心稳定维持在陕西中部、山西、京津冀、辽宁等地南部和山东北部,给上述地区造成了巨大的经济损失和严重的人员伤亡。基于台站观测降水、NCEP/NCAR和ERA5再分析资料诊断了本次降水过程的极端性。结果表明,本次暴雨过程无论是降水强度、持续时长还是经向水汽输送均表现出典型北方夏季暴雨和大气环流配置特征。上述五省二市区域平均的过程累计雨量强度远远超过秋季其他暴雨个例,即使在夏季也位列第二。本次过程的极端性与强降水中心稳定在上述地区密切相关。上述五省二市区域平均降水连续4日均超过15 mm,这在秋季历史上从未出现过。除过程的极端性强外,9月山西等地降水异常偏多对10月初秋涝也起到了叠加作用。本次秋涝对应的大气环流呈现出典型的北方夏季主雨季环流型,表现为西太平洋副热带高压(副高)偏西偏北,副高西侧的经向水汽输送异常强盛,同时10月4—6日北方地区发生一次强冷空气过程,冷暖气流交汇在上述地区。水汽收支计算表明,本次过程的经向水汽输送强度为秋季历史之最,甚至超过了盛夏时期北方大部分暴雨过程水汽输送强度。上述分析结果表明,即使在仲秋时节亦可产生有利于北方极端持续暴雨的环流形势和水汽输送,并导致秋涝发生。  相似文献   

20.
利用中国国家级地面气象站逐时降水资料,采用地理加权回归(Geographically Weighted Regression,GWR)模型系统分析了中国中东部暖季降水与海拔高度的关系,并将二者关系作为一种客观标准,评估了ECMWF-IFS模式对2017年暖季降水的预报能力。主要结论如下:(1)总体来看,中国中东部降水频率(强度)随海拔高度升高而增加(减小),二者在不同地区的贡献程度不同导致降水量与海拔高度关系的区域差异显著。(2)通过对比午后短时和夜间长时降水事件与海拔高度关系的差异,发现午后短时降水事件的降水量主要随海拔高度升高而增加,且以降水频率与海拔高度关系的贡献为主。而夜间长时降水事件的降水量与海拔高度关系的区域一致性较差。相较于午后短时降水事件,夜间长时降水事件中有更多站点表现出降水量随海拔高度升高而减小的特征,在大地形周边陡峭地形处的站点所表现出的此种差异较东部孤立地形处更加显著。(3)根据ECMWF-IFS模式的评估结果,模式能够较好地刻画出中国中东部2017年暖季降水气候态的空间分布特征,且与观测具有较大的空间相关系数。但从降水与海拔高度关系来看,观测与模式的空间相关性偏弱。此外,模式能够表现出降水强度(频率)主要随海拔高度升高而减小(增加)的特征,但绝大多数站点在模式中的降水强度(频率)与海拔高度的负(正)回归关系要弱(强)于观测结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号