首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
珠江流域1961-2007年气候变化及2011-2060年预估分析   总被引:8,自引:3,他引:5       下载免费PDF全文
 根据珠江流域1961-2007年气温、降水量观测资料和ECHAM5/MPI-OM模式2011-2060年预估结果,分析了流域过去47 a的气温和降水量变化,并预估未来50 a变化趋势。结果表明,在全球变暖的背景下,过去47 a温度呈上升趋势,约升高1.8℃。冬季增温最明显,夏季最弱。未来50 a流域温度仍呈上升趋势,A1B情景下升幅约1.9℃,并且年际变化增强。A2和B1两种排放情景下秋季升温最显著,冬季最弱,A1B排放情景与此相反。过去47 a秋季降水量呈减少趋势;春、夏、冬季和年降水量均呈增加趋势。未来50 a降水总体呈增加趋势,A1B排放情景降水增加最多,约为230 mm。A2、A1B和B1情景下降水季节分配未发生显著变化。年降水和冬季降水的年际变率增强,秋季减弱。  相似文献   

2.
利用喜马拉雅山脉中段南、北两侧6个气象站1971-2007年逐月气温、降水资料,分析了该地区气候变化趋势、异常及突变特征。结果表明:喜马拉雅山脉中段南、北两侧年、季平均气温均呈明显上升趋势,冬半年升温幅度大于夏半年。年及夏半年平均气温均为随年代升高趋势,而冬半年气温在20世纪80年代较70年代略偏低,90年代后又逐渐升高。21世纪前7 a升温最为显著,较20世纪70年代升高0.6~1.1℃。1997年该地区南侧年平均气温发生突变,突变后增温趋势更加明显。20世纪90年代末以来,异常偏暖年份出现的几率明显增加,且南侧多于北侧。喜马拉雅山脉中段北侧年及冬夏半年降水均呈增多趋势。南侧年和夏半年降水呈减少趋势,冬半年为增多趋势。降水异常出现在20世纪80、90年代,21世纪后降水出现异常的概率明显减少。近40 a,北侧气候具有暖湿化趋势;南侧冬半年与之类似,但夏半年及全年呈暖干化趋势。  相似文献   

3.
利用耦合模式比较计划(CMIP3)提供的20世纪气候模拟试验(20C3M)及A1B情景预估试验,讨论了全球增暖情景下21世纪中期中国气候的可能变化。结果表明,A1B情景下,中国夏季降水变化在-0.1~1.1mm/d,冬季降水变化在-0.2~0.2mm/d。模式对降水变化的预估存在较大不确定性。无论冬夏,预估的全国表面气温都将升高,升温幅度在1.2~2.8℃;随纬度升高,增暖幅度相应增大。模式对表面气温变化的预估能力强于对降水变化的预估能力。在A1B情景下,东亚夏季风增强,而冬季风则略为减弱,东亚夏季风雨带到达最北后南撤的时间较之20C3M滞后约一个月。  相似文献   

4.
 利用参与IPCC第四次评估报告(AR4)的多个全球气候系统模式的输出结果,着重分析了2101-2198年温室气体浓度稳定在720 mL/m3和550 mL/m3水平时(S 720和S 550情景),中国地区地表温度与降水的时空变化特征。结果表明:1) 当温室气体浓度稳定不变时,22世纪中国地表温度仍将呈上升趋势,增温幅度为0.4℃/100a,但升温趋势平缓,幅度明显小于SRES A1B(中等排放)和B1(低排放)情景,冬、春季增温显著且高纬地区增温明显大于低纬地区,夏、秋季次之,因此季节间的温差将会变小;2) S 720(S 550)情景下年平均降水增加幅度基本稳定在11%(8%)左右,冬季降水增加显著,且增幅从南向北逐渐增大,春季次之,夏、秋季大部分地区降水将减少10%~30%。  相似文献   

5.
2种降尺度方法在太湖流域的应用对比   总被引:3,自引:1,他引:2  
刘浏  徐宗学  黄俊雄 《气象科学》2011,31(2):160-169
同时应用统计降尺度模型SDSM(Statistical Downscaling Model)和区域气候模式PRECIS(Providing Regional Climate for Impacts Studies),对太湖流域的日降水量和日最高、最低气温进行降尺度处理,建立未来2021-2050年的气候变化情景,并对比分析两种方法的适用性.结果表明,两种方法模拟的未来时期日最高、最低气温季节和年的变化情景增幅总体上比较一致,高排放情景A2下模拟生成的情景增温幅度较B2情景大,未来时期最高气温增加幅度比最低气温明显.两种方法模拟的降水变化情景差异明显,PRECIS模拟的2021-2050年降水增加趋势明显,增幅较大;而SDSM模拟的未来时期降水存在一定的减少趋势,变化幅度相对较小.以上结果说明PRECIS和SDSM都能较好地模拟太湖流域未来气温变化情景,而对未来降水的模拟不确定性较大.  相似文献   

6.
使用NASA/NCAR有限区域大气环流模型FvGCM结果驱动高分辨率区域气候模式RegCM3 (20 km),进行1961~1990年当代气候模拟(控制试验)和2071~2100年IPCC A2排放情景下未来气候模拟(A2情景模拟试验)。将RegCM3径流模拟结果同大尺度汇流模型LRM [分辨率0.25°(纬度)×0.25°(经度)]相连接,模拟预估未来气候变化对我国黄河流域水文过程的影响。结果表明:相对于当代气候,未来黄河流域呈现气温升高、降水增加(夏季7~8月降水减少)和蒸发增大的趋势,且空间分布极不均匀,造成河川径流在5~10月减少,加剧流域夏季的水资源短缺;未来气温升高使得融雪径流增加,可能导致更早和更大的春季径流,使径流过程发生季节性迁移,引起黄河流域水资源年内分配发生变化。  相似文献   

7.
21世纪黄河流域上中游地区气候变化趋势分析   总被引:2,自引:0,他引:2  
气候变化预估常用的全球气候模式(GCM)难以提供区域或更小尺度上可靠的逐日气候要素序列,针对这一问题,应用统计降尺度模型(statistical downscaling model,SDSM)将HadCM3的模拟数据(包括A2、B2两种情景)处理为具有较高可信度的逐日站点序列。以1961-1990年为基准期,分析了21世纪黄河流域上中游地区未来最高气温、最低气温与年降水量的变化。在A2、B2两种气候变化情景下,日最高气温、日最低气温均呈升高趋势;但A2的变化较显著,日最高气温的升高趋势在景泰站最明显,日最低气温的升高趋势在河曲站最显著。流域平均的年降水量变化范围为-18.2%~13.3%。A2情景下降水量增加和减少的面积基本相等,宝鸡站降水量增加最多;B2情景下大部分区域降水减少,西峰镇降水量减少最显著。  相似文献   

8.
21世纪黄河流域上中游地区气候变化趋势分析   总被引:10,自引:0,他引:10  
 气候变化预估常用的全球气候模式(GCM)难以提供区域或更小尺度上可靠的逐日气候要素序列,针对这一问题,应用统计降尺度模型(statistical downscaling model,SDSM)将HadCM3的模拟数据(包括A2、B2两种情景)处理为具有较高可信度的逐日站点序列。以1961-1990年为基准期,分析了21世纪黄河流域上中游地区未来最高气温、最低气温与年降水量的变化。在A2、B2两种气候变化情景下,日最高气温、日最低气温均呈升高趋势;但A2的变化较显著,日最高气温的升高趋势在景泰站最明显,日最低气温的升高趋势在河曲站最显著。流域平均的年降水量变化范围为-18.2%~13.3%。A2情景下降水量增加和减少的面积基本相等,宝鸡站降水量增加最多;B2情景下大部分区域降水减少,西峰镇降水量减少最显著。  相似文献   

9.
以南水北调中线工程水源区为研究流域,采用线性回归法、Mann-Kendall非参数检验等方法,分析了1961—2000年的水文气象要素变化特征;基于数字高程模型、土地利用和土壤类型等资料,研究了SWAT模型在研究流域的适用性;根据IPCC第四次评估报告多模式结果,分析了IPCC SRES A2和A1B情景下2011—2050年的降水、气温、径流的响应过程。结果表明:1961—2000年南水北调中线工程水源区降水量无显著变化趋势,气温呈缓慢上升趋势,径流量呈缓慢减少趋势。与基准期(1961—1990年)相比,未来40年A2和A1B两种气候情景下水源区降水量、气温和径流量都呈现出增加趋势,A2情景下增加趋势明显,但径流量增幅小于降水量的增幅,这可能与蒸发量的增加有关。未来气候变化对南水北调中线工程水源区径流变化影响不大,总体有利于南水北调中线工程的调水。  相似文献   

10.
21世纪天山南坡台兰河流域径流变化情景预估   总被引:2,自引:0,他引:2  
基于台兰水文站2003—2005年观测的水文气象数据,通过参数率定和验证获得了适用于台兰河流域的HBV水文模型优化参数。应用RegCM3气候模式在IPCC SRES A1B情景下的预估数据,经Delta降尺度方法生成流域未来气候数据,并结合流域冰川退缩情景预估台兰河流域径流在21世纪中期(2041—2060年)和末期(2081—2100年)可能发生的变化。结果表明:在21世纪中期和末期,台兰河流域气温将显著上升,而降水变化不大;21世纪中期冰川3种可能退缩比例为15%、20%和25%,末期分别为20%、30%和40%;无论冰川处于哪一种退缩情景,21世纪径流较基准期(1981—2000年)都呈增加趋势,中期和末期最小增幅将分别为17.3%和18.6%;最大增幅可达45.9%和66.0%;耦合RegCM3气候模式预估增幅为28.9%和41.5%;台兰河流域未来径流年内分布与基准期大体相同,但又呈现出一定的差异性,具体表现为,在21世纪中期5月份径流增加很快,径流峰值出现在7月份,而到21世纪末期径流峰值出现在8月份。  相似文献   

11.
环青海湖地区气候变化及其对荒漠化的影响   总被引:30,自引:5,他引:30  
对环青海湖地区1976年以来的气温、降水、蒸发等气候要素的气候变化趋势及突变现象进行了分析和检验。结果表明:年平均气温及春、夏、秋、冬四季气温均呈上升趋势,其中以秋、冬两季最为明显;年平均降水量及春、夏、冬季降水自90年代后出现减少趋势,秋季降水始终呈减少趋势,且线性变率达-7.28mm/10a;各季及年蒸发量呈增大趋势,其中年、夏季蒸发量的线性变率分别为11.7、9.39mm/a。各季及年气温出现过一次明显的增暖现象;降水虽然出现过一次明显的增加和减少,但增加出现在80年代,而减少则出现在90年代;同样,蒸发也出现过一次明显的增大和减小现象,只是减少出现在80年代,而增大而出现在90年代。这种气候趋势和突变现象的发生,加剧了环青海湖地区荒漠化的蔓延,致使草地退化、河流流量减少、湖泊水位下降,生态环境受到严重影响。  相似文献   

12.
用陆面模式SSiB与动态植被模型TRIFFID以及流域地形指数水文模型的耦合模型SSiB4T/TRIFFID模拟了长江下游的青弋江流域植被和水量平衡的动态过程,分析了气温和降水变化对流域径流和蒸发的影响。结果表明:(1)流域气温上升10C,径流减小6.7-9.7%;气温上升20C,径流减小11.7-17.4%;(2)降水增加5%,径流增加9.2-11.6%,降水减小5%,径流减小8.6-11.6%;(3)温度不变仅降水变化对流域蒸发影响很小,温度增加20C,流域总蒸发3-10月份增加8.0-10.7mm,其余月份增加5.4-7.1mm,1月和12月蒸发对温度增加最敏感;(4)气温上升20C,叶面积指数1月和12月增加,5-10月略有减小。降水和气温变化对青弋江流域径流影响明显且与植被类型有关,流域蒸发的变化主要受温度变化的控制。  相似文献   

13.
根据海河流域1961-2010年气象观测资料,检验IPCC AR4中全球气候模式和多模式集合的模拟能力,并预估未来2011-2050年气候变化的可能趋势,结果表明:全球气候模式以及多模式集合对海河流域都具有一定的模拟能力,其中MIUB_ECHO_G模式和多模式集合具有相对较好的模拟能力.海河流域气温和降水未来情景预估表明:气温整体呈现增加趋势,尤其是A1B情景下各模式的年升温率均高于全国水平;未来降水也呈现增加趋势,在A1B和B1情景下,各模式都为夏季降水增加显著.A2情景下,春季时各模式降水均增加显著,A1B情景下,MIUB_ECHO_G模式模拟在2013年出现突变,降水量出现显著增长,A2情景下,MIUB_ECHO_G模式和多模式集合模拟的降水量则是在2031年和2001年出现突变,出现显著增长.  相似文献   

14.
利用MM5V3区域气候模式单向嵌套ECHAM5全球环流模式的结果,对中国地区实际温室气体浓度下当代气候(1981—2000年)及IPCC A1B情景下21世纪中期气候(2041—2060年)分别进行了水平分辨率为50 km的模拟试验。首先检验全球和区域模式对当代气候的模拟情况,结果表明:区域模式对中国地区地面温度和降水空间分布的模拟能力优于全球模式;与实际观测相比,区域模式模拟的地面温度在中国大部分地区偏低,模拟的降水量偏多,降水位置偏北。IPCCA1B情景下中国地区21世纪中期气候变化的模式结果显示:各季节地面温度在全国范围内都将比当代升高1.2~3.9℃,且升温幅度具有北方大于南方、冬季大于夏季的时空分布特征;降水变化具有一定的区域性和季节性,秋季和冬季降水在全国大部分地区都将增加10%~30%,春季和夏季降水则呈现"北方减少、南方增多"的趋势,变化幅度在-10%~10%之间。21世纪中期地面温度和降水变化还具有一定的年际特征:地面温度在中国地区各子区域均表现为上升趋势,升温速率在0.7~0.9℃/10a之间,温度变率也比当代有所增大;降水在西北地区略呈下降趋势,在其它子区域均为上升,降水变率的变化具有区域性特征。  相似文献   

15.
青藏高原及铁路沿线未来50年气候变化的模拟分析   总被引:10,自引:2,他引:8  
徐影  赵宗慈  李栋梁 《高原气象》2005,24(5):700-707
利用由IPCC数据分发中心(DDC)提供的5个全球海气耦合模式(包括海冰与陆地生态系统)(CCCma,CCSR,CSIRO,GFDL,Hadley)气温及降水的模拟结果,对温室气体排放情景SRES-A2和B2影响下,青藏高原及铁路沿线未来50年气温和降水的变化进行了分析,包括整个青藏高原地区2011-2040年,2041-2070年的温度和降水空间分布特征以及21世纪前50年温度和降水变化的线性倾向等,结果表明:在人类活动引起的温室气体不断增加的情况下,21世纪青藏高原地区的温度将继续增加,在B2排放情景下,2011~2040年年平均温度增暖在高原主体达到1.6℃;20412070年,整个青藏高原的温度将上升2.8~3.0℃,A2排放情景下的升温幅度比B2排放情景下略高。对青藏铁路沿线地区各站A2和B2两种排放情景下,每10年平均的温度分析表明,在A2排放情景下,到2050年前后青藏铁路沿线各站的温度增加将是2010年时的2~3倍左右,A2时在2.56~2.96℃之间,B2时在2.37~2.65℃之间。对21世纪前50年整个青藏高原地区温度变化的线性倾向的空间分布的分析可知,在A2排放情景下,大部分都在1.5~2.5℃/50a,冬季大部分地区的变暖倾向都在2.0℃/50a以上,有些地区达到2.5℃/50a以上,夏季在2℃/50a左右;B2时青藏高原地区温度变化倾向的分布趋势与A2时基本一致,只是变化的数值偏低约0.5℃。对21世纪青藏高原地区降水变化的预估结果表明,与温度不同,在两种不同的排放情景下,降水的变化较为复杂。总体来说,21世纪前50年青藏高原大部分地区的降水为增加趋势。  相似文献   

16.
利用长江源区5个气象站46a的地面降水和高空露点资料,分析了该地区降水和高空水汽含量的变化特征。结果表明:近46a来,长江源区不同雨量等级的雨日和雨日平均雨量在夏半年呈减少趋势,冬半年呈明显增多趋势,降水集中,降水强度增大;年际间降水量不稳定,年变化趋势不明显;夏、秋季降水量变化呈微弱减少趋势,而冬、春季降水量呈增加趋势,其中春季增幅较大,冬季增湿趋势明显,冬、春季降水量均在20世纪70年代和80年代出现了由少向多的突变;长江源区气候在波动性变暖变干过程中,自1986年起出现了气候转向暖湿的信号,其主要原因在于全球变暖并由此引起的海洋蒸发和陆地蒸散加强,地气水分循环加快,空中水汽输送加强。  相似文献   

17.
1961-2009年三江源地区气候变化特征分析   总被引:2,自引:0,他引:2  
利用三江源地区18个气象台站1961—2009年气温、年最高气温、年最低气温、降水量、降水日数等资料,分析了该地区年最高气温、年最低气温、降水量、降水日数等气候要素的变化趋势。研究表明:近49年来三江源年平均气温、年平均最高气温、年平均最低气温均在升高,升高速率平均最低气温明显大于平均气温和平均最高气温,年平均气温的升高主要是由最低平均气温升高引起的;三江源年和四季降水量均呈增多趋势,冬、春季降水量增幅最明显,年降水量变化的空间分布北部增多而东南部减少,年降水量除20世纪70年代—21世纪初均呈增加趋势;年和冬、春季≥0.1mm降水日数增加,而夏秋季降水日数减少;年和冬、夏、秋季潜在蒸散量呈显著性增加趋势,春季变化则不明显;年和四季平均风速均呈显著下降趋势;年和四季日照时数变化不显著。  相似文献   

18.
河西走廊东部气候变化及资源利用对策   总被引:6,自引:3,他引:6  
运用统计学方法对河西走廊东部1961~2000年日照、气温、降水、蒸发等气候资料进行统计分析得出:40年来,气温呈持续升高趋势,进入20世纪90年代升温加速,冬季升温最为显著,春、秋季次之,夏季升温幅度最小。日照、降水呈增加趋势,蒸发呈减少趋势,但增减幅度均不大。同时分析了气候变化对河西走廊东部生态、农业的影响。提出了提高气候资源利用率的途径。  相似文献   

19.
利用ECHAM5/MPI-OM气候模式预估2001-2050年长江流域不同排放情景(SRES-A2,A1B,B1)下径流深的变化,分析了长江流域地表水资源量的时空变化特征。结果表明:3种排放情景下长江流域多年平均地表水资源量相差不大,但不同排放情景下年际变化特征较为复杂,且变化趋势有所不同。其中,A2高排放情景下地表水资源量呈缓慢减小的趋势,A1B中等排放情景下变化趋势不明显,B1低排放情景下呈相对最为显著的增加趋势。地表水资源量年代际变化波动幅度也较大,2001-2030年3种情景下地表水资源量总体呈现下降特征,但从2030年起,则均表现出不同程度的增加,最高增幅达7.47%,其中尤以夏季和冬季增加显著。模式预估长江流域未来水资源量仍保持目前水平,水资源空间分布不均匀特征仍较为突出。  相似文献   

20.
2050年前长江流域地表水资源变化趋势   总被引:3,自引:0,他引:3  
 利用ECHAM5/MPI-OM气候模式预估2001-2050年长江流域不同排放情景(SRES-A2,A1B,B1)下径流深的变化,分析了长江流域地表水资源量的时空变化特征。结果表明:3种排放情景下长江流域多年平均地表水资源量相差不大,但不同排放情景下年际变化特征较为复杂,且变化趋势有所不同。其中,A2高排放情景下地表水资源量呈缓慢减小的趋势,A1B中等排放情景下变化趋势不明显,B1低排放情景下呈相对最为显著的增加趋势。地表水资源量年代际变化波动幅度也较大,2001-2030年3种情景下地表水资源量总体呈现下降特征,但从2030年起,则均表现出不同程度的增加,最高增幅达7.47%,其中尤以夏季和冬季增加显著。模式预估长江流域未来水资源量仍保持目前水平,水资源空间分布不均匀特征仍较为突出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号