首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
利用常规观测资料、地面加密资料、卫星云图资料和雷达资料,对造成济南市"7·18"大暴雨过程的中尺度系统演变情况进行了分析。结果表明,高、低空急流耦合区内中尺度辐合线的形成和维持是造成此次大暴雨的直接原因;济南处于200hPa高空急流出口区的右侧、低空急流出口区的左侧位置正是暴雨、大暴雨产生的关键部位;在减弱的云团右后方不断有新的云团生成,从中-γ尺度发展到中-β尺度,水汽条件充足时发展成中-α尺度,是造成此次大暴雨的主要原因;大暴雨中心与云顶亮温TBB的最低值中心及强度有密切关系;在有利的大尺度背景条件下,带状回波移动的前方不断有新单体生成汇合到主体,使回波增强,降雨增幅,是造成强降水的原因之一。  相似文献   

2.
我国西南地区一次暴雨过程特征及成因   总被引:2,自引:1,他引:1  
利用卫星云图、多普勒天气雷达资料和高空风等各种天气学资料,对2009年6月8—9日广西、贵州、以及和湖南交界地带的一次暴雨过程进行了综合分析。结果表明,暴雨是由中尺度对流复合体东移、β中尺度强对流云团发展、以及二者合并造成的;地面α中尺度低压带配合α中尺度纬向切变线的生成,为中尺度对流复合体(mesoscale convective complex,MCC)的东移发展、β中尺度强对流云团的发展、以及二者的合并创造了有利条件;地面能量比低值舌的活动是MCC和β中尺度强对流云团生成和发展的触发机制之一;在多普勒雷达径向速度图上,MCC的生成和发展,伴随西南低空急流的建立和维持,大范围的逆风区的生成;MCC的消亡,伴随西南低空急流的减弱和消失,对应西北气流建立和东扩。MCC发展期和β中尺度强对流云团发展期、MCC消散期和β中尺度强对流云团消散期的涡度收支以及视热源和视水汽汇有很大的不同。  相似文献   

3.
持续拉伸型中尺度对流系统发生发展与江苏暴雨分析   总被引:3,自引:3,他引:0  
利用自动气象站、卫星探测资料,NCEP/NCAR 1°×1°再分析资料等,从环流特征,动力、热力和水汽条件等对发生在江苏地区的两次梅汛期大暴雨过程的中尺度对流云团的发生、发展进行了分析。结果表明:这两次中尺度对流云团中均存在持续伸长型的中尺度对流系统(PECS),大暴雨区与TBB<-70 ℃区域有较好的对应关系,有利的环境场形成的高空辐散、低空辐合和强烈的上升运动是PECS发生发展的重要条件。PECS云团处于200 hPa高空急流入口区右侧、西南低空急流左侧(切变线南侧),呈西南—东北向线状排列,低层暖湿不稳定气流诱发中尺度云团的产生,气旋性涡度场对积云对流活动具有组织和增强作用。当正涡度向垂直方向发展时,附近产生强烈的垂直上升运动,对应着中尺度PECS云团的强烈发展。强烈的对流不稳定有利于中尺度对流系统的发展,也有利于触发暴雨产生。  相似文献   

4.
一次MCC红外云图演变特征及成因分析   总被引:1,自引:0,他引:1  
利用FY-2E红外云图及TBB资料,结合环境形势及物理量,对2011年8月15日夜间发生在河北南部和山东北部的强降水过程进行了分析。结果表明,冷锋触发的云团与地面中尺度辐合线触发的云团合并形成MCC:冷锋触发对流云团,云团脱离冷锋东移、发展、加强,形成MβCCS;MβCCS前侧有对流云团沿地面中尺度辐合线生成、发展、少动,与冷锋触发形成的MβCCS合并发展,形成MCC。MCC系统维持阶段,其西侧有新的对流云团生成,合并到MCC主体,使其向低压中心一侧发展。小时强降水并不是产生在MCC云团的冷中心,而是基本产生在TBB冷中心的西侧,实测小时强降水发生在MCC形成前2个小时以及发展成熟阶段的前4个小时之内,MCC减弱阶段的降水量明显减小。MCC成熟阶段,TBB基本维持在-73℃以下,最低达-78℃。华北南部上空明显的上升运动及低层强的正涡度区为强降水的产生提供了动力条件。低空东北气流及低空西南气流在华北南部形成辐合,超低空东北急流和超低空西南急流的形成与维持使得辐合进一步加强,维持强的辐合上升运动导致了强降水形成。  相似文献   

5.
长江中游一次大暴雨的中尺度分析   总被引:11,自引:3,他引:8  
通过对2003年7月8日发生在长江中游的一场大暴雨进行中尺度分析,初步研究了暴雨的形成及发展过程,总结了暴雨的产生与中小尺度系统的关系,着重阐述了低空急流在暴雨形成中的作用,以及在低空急流左侧强正涡度中心附近形成中尺度涡旋,激发暴雨云团等。  相似文献   

6.
闽北大暴雨的中尺度特征分析   总被引:2,自引:0,他引:2  
王怀俊  刘爱鸣  陈世阳  黄东兴 《气象》1999,25(12):43-47
运用常规气象资料,逐时数字红外卫星云图及雷达回波资料,分析了1998年6月18 ̄19日福建省闽北地区大暴雨过程的中尺度云团发生、发展等演变特征及湿斜压锋区和低空西南急流对中度对流云团发生发展的作用,揭示了大暴雨形成和发生和一些特点。  相似文献   

7.
泥石流暴雨个例中尺度分析   总被引:10,自引:9,他引:1  
对2003年7月8~9日发生在湖北中部并且造成泥石流灾害的大暴雨过程进行了中尺度分析,结果表明:①在有利的大尺度系统下产生的中小尺度系统是暴雨产生的最直接的系统;②湖北省泥石流灾害发生在特殊的地理位置,秭归、宜昌、宜都等鄂西山地到江汉平原的过渡带是泥石流灾害的多发地;③暴雨尤其是泥石流发生地周围的历时短、局地性强的大暴雨是泥石流灾害直接的诱发原因;④中尺度系统的源地与地形有关,在西南气流的背风坡容易形成中尺度系统;⑤多普勒雷达是监测中尺度系统的强有力工具,一个中α尺度云团中可以是一个也可以有两个以上的混合回波团或带;⑥中尺度涡旋形成于低空急流左侧强正涡度中心附近。  相似文献   

8.
江苏一次持续性梅雨锋暴雨过程诊断与分析   总被引:3,自引:3,他引:0  
吴琼  钱鹏  郭煜  朱海涛  孙翠梅 《气象科学》2014,34(5):549-555
利用NCEP再分析资料,FY2E卫星的TBB资料,常规和加密气象站资料,对2012年7月2—4日,江苏省一次持续性梅雨锋暴雨过程进行了诊断和中尺度特征分析。结果表明:此次过程是东北冷涡槽东移与副热带高压西北侧暖湿气流交汇形成的。暴雨落区在低空西南急流的左侧和中高空急流的一、三象限,低层干线触发了不稳定能量的释放。经分析有7个中尺度云团造成了本次持续性暴雨,-64℃的冷云盖是较强降水的指标性温度,不断东移的中尺度云团类似于"列车效应",带来持续降水,降水开始时间落后于中尺度云团生成时间约2~4 h。地面中尺度辐合线是触发此次强降水的重要中尺度系统,辐合线附近易触发对流,且对流降水沿着辐合线方向移动。低层正、高层负的垂直螺旋度,高温高湿的大气以及较高的位势不稳定为暴雨和强对流天气提供有利条件。在垂直上升运动区北侧有明显下沉运动补偿气流,使上升气流得以长时间维持。暴雨区位于925 hPa超低空急流核移动方向的左侧。  相似文献   

9.
2007年7月18日济南大暴雨的β中尺度分析   总被引:9,自引:2,他引:7  
利用1°×1°的NCEP再分析资料、地面逐小时的观测资料和红外云图,对2007年7月18日的济南大暴雨过程进行了详细的α中尺度分析,揭示了地面β中尺度气旋新生发展的一种物理机制,并重点分析了多尺度的积云并合过程对此次强降水形成的重要作用。研究结果表明:在一个已经发展成热的MαCS的左后侧出现的下沉冷出流在低层向西南方向扩散,与午后不断加强的西南暖湿气流共同作用增强了地面的斜压性,从而使地面辐合线上的气旋性扰动加强,并迅速新生发展出β中尺度气旋。在此次强降水过程中共经历了从γ中尺度对流单体到β中尺度对流云团,再到α中尺度对流云团,最后形成中尺度对流复合系统的4个多尺度积云并合过程,而地面β可尺度气旋在每一个阶段都扮演了非常重要的角色,它们既是β中尺度对流云团的组织者,同时也是α中尺度对流云团的组成者,α中尺度对流云团往往都由一个以上的β中尺度气旋组织而成,当β中尺度气旋出现遭遇、合并之时,对流云团和降水得以强烈发展。在济南强降水发生前的1个多小时内,其西南方边界层内不断出现β中尺度超低空西南急流,它促使这一区域内不断产生回波单体并在向东北方向移动的过程中迅速发展成强回波带,当济南北面的强回波南移与这一强回波带并合后快速发展产生强降水。  相似文献   

10.
FY-2产品在济南“7.18”大暴雨临近预报中的应用   总被引:3,自引:0,他引:3  
利用常规观测资料、地面加密资料和FY-2产品对济南市"7.18"大暴雨的天气形势、云图演变特征及中尺度系统发生、发展和移动的情况进行了分析.结果表明:地面的中尺度辐合中心和中尺度辐合线是造成此次大暴雨的直接原因;强降水发生在中尺度低压中心附近,随其移动而移动;在减弱的云团右后方不断有新的云团生成,从γ尺度发展到β尺度,水汽条件充足时发展成边界清晰、结构密实的α尺度;大暴雨中心与云顶亮温TBB的最低值中心及强度有密切关系;FY-2产品在大暴雨临近预报中发挥着重要作用.  相似文献   

11.
12.
Earlier GCM studies have expressed the concern that an enhancement of greenhouse warming might increase the occurrence of summer droughts in mid-latitudes, especially in southern Europe and central North America. This could represent a severe threat for agriculture in the regions concerned, where summer is the main growing season. These predictions must however be considered as uncertain, since most studies featuring enhanced summer dryness in mid-latitudes use very simple representations of the land-surface processes ("bucket" models), despite their key importance for the issue considered. The current study uses a regional climate model including a land-surface scheme of intermediate complexity to investigate the sensitivity of the summer climate to enhanced greenhouse warming over the American Midwest. A surrogate climate change scenario is used for the simulation of a warmer climate. The control runs are driven at the lateral boundaries and the sea surface by reanalysis data and observations, respectively. The warmer climate experiments are forced by a modified set of initial and lateral boundary conditions. The modifications consist of a uniform 3 K temperature increase and an attendant increase of specific humidity (unchanged relative humidity). This strategy maintains a similar dynamical forcing in the warmer climate experiments, thus allowing to investigate thermodynamical impacts of climate change in comparative isolation. The atmospheric CO 2 concentration of the sensitivity experiments is set to four times its pre-industrial value. The simulations are conducted from March 15 to October 1st, for 4 years corresponding to drought (1988), normal (1986, 1990) and flood (1993) conditions. The numerical experiments do not present any great enhancement of summer drying under warmer climatic conditions. First, the overall changes in the hydrological cycle (especially evapotranspiration) are of small magnitude despite the strong forcing applied. Second, precipitation increases in spring lead to higher soil water recharge during this season, compensating for the enhanced soil moisture depletion occurring later in the year. Additional simulations replacing the plant control on transpiration with a bucket-type formulation presented increased soil drying in 1988, the drought year. This suggests that vegetation control on transpiration might play an important part in counteracting an enhancement of summer drying when soil water gets limited. Though further aspects of this issue would need investigating, our results underline the importance of land-surface processes in climate integrations and suggest that the risk of enhanced summer dryness in the region studied might be less acute than previously assumed, provided the North American general circulation does not change markedly with global warming.  相似文献   

13.
A simplified vegetation distribution prediction scheme is used in combination with the Biosphere-Atmosphere Transfer Scheme (BATS) and coupled to a version of the NCAR Community Climate Model (CCM1) which includes a mixed-layer ocean. Employed in an off-line mode as a diagnostic tool, the scheme predicts a slightly darker and slightly rougher continental surface than when BATS' prescribed vegetation classes are used. The impact of tropical deforestation on regional climates, and hence on diagnosed vegetation, differs between South America and S.E. Asia. In the Amazon, the climatic effects of removing all the tropical forest are so marked that in only one of the 18 deforested grid elements could the new climate sustain tropical forest vegetation whereas in S.E. Asia in seven of the 9 deforested elements the climate could continue to support tropical forest. Following these off-line tests, the simple vegetation scheme has been coupled to the GCM as an interactive (or two-way) submodel for a test integration lasting 5.6 yr. It is found to be a stable component of the global climate system, producing only ~ 3% (absolute) interannual changes in the predicted percentages of continental vegetation, together with globally-averaged continental temperature increases of up to + 1.5 °C and evaporation increases of 0 to 5 W m–2 and no discernible trends over the 67 months of integration. On the other hand, this interactive land biosphere causes regional-scale temperature differences of ± 10 °C and commensurate disturbances in other climatic parameters. Tuning, similar to the q-flux schemes used for ocean models, could improve the simulation of the present-day surface climate but, in the longer term, it will be important to focus on predicting the characteristics of the continental surface rather than simple vegetation classes. The coupling scheme will also have to allow for vegetation responses occurring over longer timescales so that the coupled system is buffered from sudden shocks.  相似文献   

14.
Summary The boundary-layer wind field during weak synoptic conditions is largely controlled by the nature of the landscape. Mesoscale (sub-synoptic) circulations result from horizontal gradients of sensible heat flux due to variation in local topography, variation in surface-cover, and discontinuities such as land-sea contrasts. Such flows are usually referred to as thermally-driven circulations, and are diurnal in nature and often predictable. In this paper we use a state-of-the-art non-hydrostatic computer model to shed light on the physical mechanisms that drive a persistent easterly wind that develops in the afternoon in the Mackenzie Basin, New Zealand. The easterly – Canterbury Plains Breeze (CPB) – is observed early in the afternoon and is often intense, with mean wind speeds reaching up to 12 m s−1. Although computer modelling in mountainous terrain is extremely challenging, the model is able to simulate this circulation satisfactorily. To further investigate the mechanisms that generate the Canterbury Plains Breeze, two additional idealized model experiments are performed. With each experiment, the effects of the synoptic scale wind and the ocean around the South Island, New Zealand were successively removed. The results show that contrary to previous suggestions, the Canterbury Plains Breeze is not an intrusion of the coastal sea breeze or the Canterbury north-easterly, but can be generated by heating of the basin alone. This conclusion highlights the importance of mountain basins and saddles in controlling near-surface wind regimes in complex terrain.  相似文献   

15.
Summary A formation of a cold air lake in a basin is studied with a mesometeorological model.A dynamic Boussinesq hydrostatic mesoscale numerical model is developed in a staggered orthogonal grid with a horizontal resolution of 1 km and with a varying vertical grid. The topography is presented in a block shape so that computation levels are horizontal.The mesometeorological model is tested in three idealized topography cases (a valley, a single mountain, a basin) and test results are discussed.In an alpine basin surrounded by mountains and plateaus the air is supposed to be stagnant at the beginning of the night. Due to differences in radiation cooling an inversion layer is formed in the basin and local wind circulation is studied by model simulations.With 14 Figures  相似文献   

16.
Simultaneous particle-image velocimetry and laser-induced fluorescence combined with large-eddy simulations are used to investigate the flow and pollutant dispersion behaviour in a rural-to-urban roughness transition. The urban roughness is characterized by an array of cubical obstacles in an aligned arrangement. A plane fence is added one obstacle height h upstream of the urban roughness elements, with three different fence heights considered. A smooth-wall turbulent boundary layer with a depth of 10h is used as the approaching flow, and a passive tracer is released from a uniform line source 1h upstream of the fence. A shear layer is formed at the top of the fence, which increases in strength for the higher fence cases, resulting in a deeper internal boundary layer (IBL). It is found that the mean flow for the rural-to-urban transition can be described by means of a mixing-length model provided that the transitional effects are accounted for. The mixing-length formulation for sparse urban canopies, as found in the literature, is extended to take into account the blockage effect in dense canopies. Additionally, the average mean concentration field is found to scale with the IBL depth and the bulk velocity in the IBL.  相似文献   

17.
Frequent fog severely restricts evaporation from blanket bogs in Newfoundland because it more than halves the radiant energy input, and it eliminates the vapor pressure deficit, resulting in evaporation at the equilibrium rate (average = 0.99 during fog). During these periods, there is no surface resistance to evaporation because the bog has been wetted by fog drip, and although the latent heat flux dominates over sensible heat (average = 0.8), both are small. In contrast, the surface dries during clear periods, increasing the surface resistance to evaporation so that sensible heat becomes more important ( = 1.05). When the mosses are dry, evaporation is below the equilibrium rate ( = 0.87), although the higher available energy ensures that actual evaporation is higher. During clear periods, daily evaporation averaged 2.5 mm, compared to 1.1 and 0.7 mm for fog and rain, respectively. The suppressed evaporation at this site is important in maintaining appropriate hydrological conditions for blanket bog development.  相似文献   

18.
Summary An eddy effect of tropical deep convection on the large-scale momentum, resp vorticity budget is investigated. The process is specified by a simple parameterization approach which is based on a concept of rotating clouds exerting a momentum on the large-scale flow. The cloud rotation is associated with the thermal properties of a cloud ensemble by the principle of conservation of potential vorticity. A decomposition of cloud classes is applied in consistency with the thermodynamical parameterization scheme of Arakawa and Schubert (1974).The parameterization is tested with observations of GATE74, Phase III. The data are processed on a B/C-scale grid (55km) in a region within 9N and 16N, and between 21W and 27W, and with a vertical resolution of 41 levels. The parameterization results correspond to the observed patterns, especially in situations with strong large-scale wind shear. The findings suggest that certain large-scalle flow regimes provoke convective scale momentum generation rather than redistributing large-scale momentum by convective circulations.With 10 Figures  相似文献   

19.
Spatial structure of a jet flow at a river mouth   总被引:1,自引:0,他引:1  
The present work concentrates on the latest data measured in the Jordan river flow in lake Kinneret. Spectral characteristics of fluctuating velocity components have been obtained and processed. The three-dimensional structure of turbulence along the flow has been described. The main features of the jet flow turbulence in the river mouth are: a) The supply of turbulent energy changes due to different mechanisms along the flow. b) The structure of turbulence formed in the river decays rapidly along the flow, and c) In the sand area and beyond it, a significant generation of turbulent energy occurs. Quantitative estimations of the above effects were carried out.  相似文献   

20.
Flow over a two-dimensional obstacle and dispersion of a heavier-than-air gas near the obstacle were studied. Two species, one representing air and the other representing the heavier-than-air gas were treated. Equations for mass and momentum were cast in mass-averaged form, with turbulent Reynolds stresses and mass fluxes modeled using eddy-viscosity and diffusivity hypotheses. A two-equation k- turbulence model was used to determine the effective turbulent viscosity. Streamline curvature and buoyancy corrections were added to the basic turbulence formulation. The model equations were solved using finite difference techniques. An alternating-direction-implicit (ADI) technique was used to solve the parabolic transport equations and a direct matrix solver was used to solve the elliptic pressure equation.Mesh sensitivities were investigated to determine the optimum mesh requirements for the final calculations. It was concluded that at least 10 grid spaces were required across the obstacle width and 15 across the obstacle height to obtain valid solutions. A non-uniform mesh was used to concentrate the grid points at the top of the obstacle.Experimental measurements were made with air flow over a 7.6 by 7.6 cm obstacle in a boundary-layer wind tunnel. Smoke visualization revealed a low-frequency oscillation of the bubble downstream of the obstacle. Hot-wire anemometer data are presented for the mean velocity and turbulent kinetic energy at the mid-plane of the obstacle and the mid-plane of the downstream recirculation bubble. A single hot-wire probe was found to be suitable for determining mean streamwise velocities with an accuracy of 11 %. The downstream recirculation bubble was unsteady and had a length range from 3 to 8 obstacle lengths.The experimental results for flow over the obstacle were compared with numerical calculations to validate the numerical solution procedure. A sensitivity study on the effect of curvature correction and variation of turbulence model constants on the numerical solution was conducted. Calculations that included the curvature correction model gave a downstream recirculation bubble length of 5.9 obstacle lengths while excluding the correction reduced this length to 4.4.In the second part of the study, numerical calculations were performed for the dispersion of a heavier-than-air gas in the vicinity of the two-dimensional obstacle. Characteristics of an adiabatic boundary layer were used in these calculations. The densities of the contaminant gases were 0, 25 and 50% greater than the air density. Calculations were performed with the contaminant injection source upstream and downstream of the obstacle.Use of the pressure gradient model reduced the size of the dense gas cloud by as much as 12%. The curvature correction model also affected the cloud expanse by reducing the effective turbulent viscosity in the downstream recirculation bubble. The location of the injection source had the largest impact on the cloud size. The area of the cloud within the 5 % contour was three times larger for downstream injection than for upstream injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号