首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用气象常规观测资料、NCEP 1°×1°再分析资料、卫星云图及呼和浩特多普勒天气雷达资料,对2015年11月22日内蒙古中部地区暴雪天气过程进行诊断分析,结果表明:在中高纬"两槽一脊"的环流形势下,500和700 h Pa短波槽、700h Pa西西南急流和地面倒槽是这次暴雪的主要影响系统,属于回流暴雪天气过程。700 h Pa西西南急流对暖湿空气的输送和水汽的强烈辐合为暴雪提供了充足的水汽条件,低层水汽辐合出现时刻降雪开始且辐合最强时出现最强降雪;高低空急流耦合加强了系统性上升运动,700 h Pa西西南暖湿空气在850 h Pa偏东气流上爬升,冷暖空气交汇及其垂直切变导致强烈的上升运动;"冷垫"与"暖盖"相配合是产生暴雪的热力条件,强降雪出现在锋区最强至减弱期间且低空急流建立后。中尺度系统云团是造成暴雪天气的直接系统,最强降雪中心与TBB≤220 K移动区域一致。片状回波中30~35 d Bz的强带状回波造成此次暴雪过程中局部强降雪,零速度线呈现"S"结构,当冷锋过境,低层转为偏北风后降雪趋于结束。  相似文献   

2.
利用常规气象资料、FY-2C卫星云图和鄂尔多斯多普勒雷达资料,对2017年2月20—21日内蒙古河套地区的暴雪天气过程进行分析,结果表明:此次暴雪天气是在两脊一槽的环流形势中,高空槽、低层切变线与低空急流配合地面倒槽产生的;高低空急流耦合,为降雪天气的发生提供动力条件,低层700h Pa低空急流源源不断的将南海水汽输送至河套地区上空,为降雪天气的发生提供水汽条件;卫星云图上显示,强降雪主要发生在明亮密实的盾状云区,高低空急流与云区一一对应;雷达回波强度整体偏弱且稳定,但持续时间近12h,长时间的停留是此次暴雪天气发生的主要原因,回波顶高度基本位于6km以下,低层有暖平流进入,反映出此次降雪过程为稳定的层状云降雪。  相似文献   

3.
乌鲁木齐暴雪在天山北坡暴雪天气中强度更强、频次更高,具有较好的代表性,本文选取近些年来乌鲁木齐最强的3场暴雪天气过程,就大尺度环流形势、高低空天气系统配置和中尺度天气系统对比分析。结果显示:乌鲁木齐暴雪出现在经向环流转纬向或环流经向度减弱的大尺度环流背景下,主导系统欧洲高压脊东南衰退过程中乌拉尔山低槽东南下,均存在南支低值系统配合,暴雪均出现在500 hPa槽前西南急流前部、700~850 hPa西北急流前部和300 hPa高空急流右侧的风速辐合区内,给出暴雪环流形势和高低空天气系统的三维空间结构和天气模型。乌鲁木齐暴雪天气发生时雷达回波图像显示,中低层均有风场辐合,回波强度和中低层风场辐合越强,回波顶高越高,降雪强度越大。3场暴雪均出现在卫星云图中尺度云团边缘云顶黑体亮温TBB等值线梯度最大处附近,TBB等值线梯度越大,降雪越强。最强降雪发生前的4~6 h,中低层4 000 m以下上升运动明显增强,700 hPa以下低层上升运动增强可作为强降雪出现的预示指标。  相似文献   

4.
本文将利用常规探测资料、NCEP再分析资料和多普勒雷达资料,对2018年12月29~30日铜仁市暴雪过程的环流形势特征与成因进行分析,结果表明:此次暴雪过程发生在高空南支槽、多波动槽东移、700hPa西南暖湿急流输送及850hPa东北回流冷垫的环流背景下,表现出持续时间长、范围广、强度大、积雪深的特征;强降雪阶段对流层低层有来自孟湾的源源不断的水汽输送,湿层厚度增强,且有较强的水汽辐合;700hPa较强的垂直上升运动及对流层中低层较强的垂直风切变利于暴雪天气的发生;强降雪时刻暴雪区800hPa以上位于高层冷平流、低层暖平流的叠加区域,为不稳定大气;此次降雪具有对流性和持续性特征,雷达反射率回波云团具有列车效应。  相似文献   

5.
利用高空和地面观测资料对济南市秋末冬初两次暴雪过程进行了对比分析。结果表明:两次暴雪过程500hPa影响系统都是中支槽,但环流形势分别是"两槽一脊"型和"一槽一脊"型;700hPa西南低空急流为暴雪的产生提供了充沛的水汽条件;低层东北风携带冷空气形成冷空气垫,西南暖湿气流沿冷空气垫爬升是暴雪形成的重要动力条件,两次暴雪过程上升运动区都伸展到200hPa,但上升运动区的起始高度不同;1000hPa气温≤1℃或地面2m气温≤2℃对降水相态的转变有较好的指示意义,气温越低出现降雪的概率越大。  相似文献   

6.
2010年冬季浙江两次强降雪过程的对比分析   总被引:3,自引:0,他引:3  
沈玉伟  孙琦旻 《气象》2013,39(2):218-225
利用NCEP1°×1°再分析资料,对浙江2010年冬季两次强降雪过程的环流形势和物理量场进行了分析和讨论.结果表明:两次过程都是北方冷空气与西南暖湿气流交汇所致,冷空气较强时,锋区迅速南压,降雪持续时间较短,暴雪产生在中低层切变线的风速辐合区中;而冷空气强度适中时,“冷垫”和静止锋长时间存在,降雪持续时间则较长,暴雪产生在低空急流的左前方;降雪区上空有明显的水汽通量辐合,水汽通量大值区的演变与降雪过程有较好的对应关系;低空辐合和高空辐散的配置是强降雪产生的有利动力条件,其强度越强,降雪也越强.  相似文献   

7.
山西省秋季罕见大暴雪天气过程诊断   总被引:4,自引:0,他引:4  
对2009年11月10~12日山西省出现的特大暴雪的环流背景、前期高空环流形势、地面影响系统、水汽条件、动力条件及云图演变等方面进行了诊断分析。结果表明:①这次极端天气事件发生在10月下旬到11月上旬北半球环流呈现明显高指数特征,全国大部分地区异常偏暖的背景下,暴雪伴随剧烈降温天气;②300hPa辐散使得对流层上层具备强烈抽吸条件是造成强降水的重要环境因素。这种低层辐合和高层辐散配置导致的强垂直上升运动是暴雪形成的动力机制;③500hPa河套小槽引导西路冷空气东移与极涡尾部的东路冷空气叠加,低层及地面的倒槽区有辐合上升气流,与锋面和高空槽、切变线配合,为降雪区提供有利的抬升条件,是造成此次暴雪的主要原因;④1500m高空有2支低空急流存在,一支是较强的东风湿急流,一支是偏南风急流,低空南风和东风急流向暴雪区提供了丰沛的水汽,低层850hPa强的水汽辐合、强的上升运动为这次暴雪天气提供了水汽和动力条件;⑤FY-2C卫星红外云图分析,这次强降水山西受到3个对流云团的影响,3个中尺度对流云团形成和消亡的时间大致间隔8~10h,对流云团的不断生成和发展是这次强降雪天气得以长时间持续。  相似文献   

8.
利用常规气象资料、通辽市和赤峰市多普勒雷达资料、气候极端降雪以及NCEP的FNL(1°×1°)逐6 h再分析资料,对2020年11月17-19日内蒙古中东部极端回流大暴雪天气进行分析。研究表明:500 hPa东移高空槽前暖湿气流、 700 hPa西南急流以及暖式切变线为降雪提供了丰富的水汽和动力辐合抬升机制,地面至850 hPa均为偏东风冷垫,中高空西南暖湿空气沿低层冷垫爬升产生锋生,是造成此次大暴雪的主要原因。降雪最强时段,从低层到高层均为上升运动,中低层水汽几乎接近饱和状态,深厚湿层有利于产生高效率的强降雪;通辽探空图有冰相层、逆温层、融化层、中性层等多种特殊层结,并有明显表征冻雨的“象鼻”层结曲线;低层东北风急流与中高层西南急流形成强的垂直风切变和温度差,动力锋生在降雪期间一直维持,动力锋生最强阶段和降雪最强时刻相对应。雷达反射率有0℃层亮带,50~55 dBz带状强回波;基本径向速度低层长时间维持东北急流构成的冷垫,并有一对正负速度中心的风速核,形成“牛眼”结构,“牛眼”结构代表边界层出现急流核;雷达基本径向速度图低层东北风,中高层西南急流,很好地反映了西南暖湿急流在冷垫上爬升...  相似文献   

9.
山东一次历史极端降雪过程的诊断分析   总被引:2,自引:0,他引:2  
利用常规观测资料、NCEP再分析资料及卫星TBB资料,对2013年4月19-20日山东极端暴雪过程的环流背景、物理量诊断、地形作用及其中尺度特征等进行了综合分析。结果表明:此次暴雪天气是以500 h Pa高空槽、700 h Pa西南低空急流及切变线、以及850 h Pa以下低层东北风作为环流背景的回流性质降雪;暴雪期间,相对湿度≥90%的高湿区明显下传,南方的暖湿空气沿着低层冷垫爬升,到达一定高度以后,水汽凝结产生降雪,强降雪落区并不位于强上升运动的中心位置,而是位于最大中心值的偏北一侧,在28°N-40°N之间高空有一明显的能量锋区,且随纬度的增高而向高空倾斜;近地面层有明显的辐合流场,TBB分布反映出暴雪期间有中小尺度系统配合,TBB最大值在-45~-40℃之间;此次极端暴雪过程中地形对温度的急剧下降起了重要的作用。  相似文献   

10.
利用NCEP再分析资料,采用天气学诊断方法,对2009年11月10—12日石家庄地区出现的一次历史同期罕见区域性暴雪天气过程的环流特征和物理量场进行了探讨。结果表明:此次暴雪天气过程属典型的东北回流型降雪,地面从贝加尔湖南下冷高压与中国河套低压倒槽、700 hPa暖式切变线和500 hPa高空槽是主要影响系统。低空西南急流与超低空东北急流耦合,在为暴雪提供水汽和热量输送的同时加强了抬升运动。水汽的垂直输送导致局地比湿显著增大,深厚的湿层和强烈的水汽辐合为暴雪提供了充沛的水汽条件。"高空辐散、低空辐合"以及强劲的上升运动是暴雪的动力条件,降雪强度最大时段对应上升运动的强盛发展阶段。暴雪开始阶段云水含量的时空演变特征,一方面显示了水汽的迅速增加与爬升,另一方面也说明了地形的强迫抬升作用不容忽视。850 hPa温度低于700 hPa,有利于水汽经过此层时被凝华成固态。逆温层提前24 h出现,而且暴雪最强时段内两层温差均为5℃以上,这对暴雪预报具有指示意义。  相似文献   

11.
利用常规观测资料、NCEP FNL(1o×1o)再分析资料以及卫星、雷达资料,对乌鲁木齐2015年12月10日-12日的极端暴雪天气过程的环流演变及暴雪产生和维持的机制进行了初步分析。结果表明:此次暴雪过程是欧洲脊发展推动乌拉尔山地区长波槽东移南压,同时配合低层风场的辐合切变、地面冷锋及地形强迫抬升等共同作用造成此次过程。500hPa偏南气流,700hPa、850hPa的偏北气流在乌鲁木齐的交汇有利于加强冷暖空气的汇合和水汽的聚集,为乌鲁木齐强降雪提供了有利的动力条件。各物理量场的配合及地形作用使得此次乌鲁木齐大暴雪持续时间长,降雪强度大;降雪前期乌鲁木齐逆温使不稳定能量集中释放;散度辐合中心最强时段及上升运动均与降雪时段对应,乌鲁木齐地形引起的强迫抬升为暴雪提供有利的垂直环流;水汽的主要来源为阿拉伯海及孟加拉湾,且水汽在中低层的辐合上升明显,水汽通量散度辐合中心的出现时间对本次乌鲁木齐大暴雪的最强降水时段有很好的指示意义。  相似文献   

12.
山东春季两次强降雪过程对比分析   总被引:1,自引:0,他引:1  
利用常规气象观测资料、区域自动站加密观测资料和NCEP 1°×1°再分析资料,对山东2010年2月28日早春和2013年4月19日春季两次极端暴雪天气过程的环流形势和影响天气系统演变特征、水汽输送条件以及物理量场特征进行了对比分析。结果表明:1两次暴雪过程均受500hPa高空槽、700hPa切变线的影响,并有700hPa低空西南风急流配合;2暴雪区上空均有一条明显的能量锋区,并伴有逆温层,湿层深厚,垂直螺旋度呈上正下负的分布特点;强降雪落区位于水汽通量大值带左侧的水汽通量散度辐合中心附近;31.8km处冷空气活动是判断降雪结束的一个关键高度。不同之处在于:1"2·28"暴雪冷空气自东北楔入,暖湿气流被迫抬升,冷空气发挥主动作用;"4·19"暴雪之前一直维持东北风,形成冷垫,暖湿气流沿冷垫爬升,冷空气发挥被动作用;2"2·28"暴雪比"4·19"暴雪辐合上升运动出现的高度要高,上升运动的强度更强,不稳定层结更深厚。  相似文献   

13.
2021年2月24—25日河南出现一次伴高架雷暴的暴雪天气过程,各级气象台站业务预报对该过程中雷暴均漏报,对降雪量级预报也偏小。利用常规气象观测资料、双偏振雷达产品和NCEP 1°×1°逐6 h再分析资料,重点分析了这次暴雪过程中高架雷暴的环境条件及双偏振雷达参量特征。结果表明:(1)东移加深的中纬度高空槽、700 hP a发展北上的西南急流与地面扩散南下的冷空气等天气尺度系统相互作用触发对流,造成暴雪过程出现高架雷暴。(2)该过程最强水汽输送位于700 h Pa,水汽通量大值带位于河南沿黄(河)一带,河南上空水汽充足,为中层不稳定层结建立和对流触发提供了有利的热力条件。(3)低槽前部两个次级环流圈上升支叠加为雷暴发生和降雪增强维持提供了强的上升运动;0—6 km较强垂直风切变有利于对称不稳定发展;700 hPa西南风急流辐合作用配合高空槽大尺度强迫使得中高层不稳定能量释放,从而触发对流。(4)高架雷暴发生时,雷达回波强度≥45 dBz、顶高超过-20℃层,“牛眼”结构和辐合上升区长时间维持有利于产生雷暴;雷达双偏振参量相关系数(CC)较小(0.7~0.9)、差分相移率(KD...  相似文献   

14.
利用常规观测资料和NCEP(1°x1°)再分析资料,对2020年2月发生在内蒙古的一次地面回流与倒槽共同作用下的暴雪天气过程进行详细分析。结果表明:本次暴雪过程的主要影响系统是高空槽、700hPa切变线、高低空急流、地面冷高压、倒槽和冷锋。在高空下沉气流及1000~800hPa上东北急流的共同作用下,干冷气流形成“冷垫”,迫使暖湿空气沿冷垫抬升,同时不断的有干冷空气向中低层暖湿气流下方入侵,与中高层的西南急流形成深厚的锋生区和锋面次级环流,二者的正反馈作用为暴雪提供增幅作用。700hPa西南急流不断输送水汽,暴雪区位于比湿、水汽通量和水汽通量散度辐合的大值区。低层辐合高层辐散,配合显著的上升气流,有利于水汽积聚与输送和上升运动。强锋生落区与暴雪区域相对应,其中水平变形作用项对锋生的贡献最大,垂直运动项对锋生的贡献最小。湿位涡在强降雪落区内MPV1>0, MPV2<0,有利于本次暴雪过程的发生,高空下传的正MPV1会引起低层冷空气加强,冷暖空气对比度加大,有利于锋生,同时湿斜压性增强,诱发气旋式环流,进一步增强降雪。  相似文献   

15.
利用NCEP再分析资料,采用天气学诊断方法,对2009年11月10—12日石家庄地区出现的一次历史同期罕见区域性暴雪天气过程的环流特征和物理量场进行了探讨。结果表明:此次暴雪天气过程属典型的东北回流型降雪,地面从贝加尔湖南下冷高压与河套低压倒槽、700 hPa暖式切变线、500 hPa高空槽是主要影响系统。低空西南急流与超低空东北急流耦合,在为暴雪提供水汽和热量输送的同时加强了抬升运动。水汽的垂直输送导致局地比湿显著增大,深厚的湿层和强烈的水汽辐合为暴雪提供了充沛的水汽条件。“高空辐散、低空辐合”以及强劲的上升运动是暴雪的动力条件,降雪强度最大时段对应上升运动的强盛发展阶段。暴雪开始阶段云水含量的时空演变特征,一方面显示了水汽的迅速增加与爬升,另一方面也说明了地形的强迫抬升作用不容忽视。850 hPa温度低于700 hPa,有利于水汽经过此层时被凝华成固态。逆温层提前24 h出现,而且暴雪最强时段内两层温差均为5 ℃以上,这对暴雪预报具有指示意义。  相似文献   

16.
针对2016年初冬河南省首场区域强暴雪过程,利用常规观测资料、L波段雷达探空资料和NCEP再分析资料等,从影响系统和物理量诊断方面深入分析其发生发展机制,结果表明:宽广的纬向型环流中不断有短波槽东移,东北冷涡深厚且维持时间较长,是暴雪发生的大尺度环流背景;中高层偏南气流,低层偏北气流的流场配置起至关重要的作用:850~925 hPa东北急流迫使暖湿空气抬升为暴雪发生提供“冷垫”的同时,与500~700 hPa西南急流形成强垂直风切变和深厚的锋生区,加强的斜升运动和锋面次级环流,对暴雪起增幅作用;700 hPa作为关键层,西南暖湿急流输送水汽的同时与冷涡后部冷空气交汇于黄淮地区形成的辐合切变线,是暴雪发生的重要动力抬升机制,其南北摆动形成了河南中西部和东南部两个降雪大值中心;暴雪区随着“冷空气楔”逐步南压时,其上层始终存在湿正压项大于零且湿斜压项小于零的湿位涡绝对值高值中心,有利于对称不稳定能量的释放和暴雪的发生。  相似文献   

17.
利用NECP再分析资料、卫星云图资料、新一代天气雷达资料及实况观测资料对2010年4月12-13日一次东北低涡产生的黑龙江省暴雪天气过程进行分析,详细讨论了此次暴雪的发生机制及天气特点。此次降雪过程由地面气旋北上引发,高空低涡前部东风暖平流和槽后冷平流相遇形成暖锋锋生,低涡东北部产生暴雪。低空急流对水汽的输送作用和低层较强的辐合上升运动为此次降雪过程提供增强机制。云系的发展、移动与降雪有较好的对应关系,较大降雪出现在逗点云系顶部。  相似文献   

18.
利用NECP再分析资料、卫星云图资料、新一代天气雷达资料及实况观测资料对2010年4月12-13日一次东北低涡产生的黑龙江省暴雪天气过程进行分析,详细讨论了此次暴雪的发生机制及天气特点。此次降雪过程由地面气旋北上引发,高空低涡前部东风暖平流和槽后冷平流相遇形成暖锋锋生,低涡东北部产生暴雪。低空急流对水汽的输送作用和低层较强的辐合上升运动为此次降雪过程提供增强机制。云系的发展、移动与降雪有较好的对应关系,较大降雪出现在逗点云系顶部。  相似文献   

19.
利用常规观测资料和天津新一代天气雷达资料,对20022017年发生在天津城区的4次暴雪天气过程进行了分析,结果表明:4次暴雪过程均属于回流型降雪,但环流形势和影响系统却不尽相同;暴雪主要产生在500 hPa和700 hPa高空槽、850 hPa切变线东移的形势下;水汽主要来源于700 hPa西南急流及850 hPa低空和925 hPa超低空急流的水汽输送。回流东北风在天津地区形成冷空气垫,有利于西南暖湿气流的爬升,加强了地面的动力抬升作用。通过对暴雪过程的雷达径向速度场分析看到,暴雪过程具有零速度等值线闭合特征,此特征是冬季降雪过程独有的特征,反映了近地面层与中高层之间的风切变,闭合越完整表明切变越强烈,可以直观地预警暴雪量级。另外,高仰角上中尺度辐合线维持时间的长短与降雪量之间对应关系较好,可以作为预警降雪量级的一个指标。VWP图上从观测到西北风出现到降雪结束平均需要12 h,这可以作为暴雪结束时间的预报指标。  相似文献   

20.
利用2000-2016年常规观测、台站降水资料和NCEP的1°×1°再分析资料,对影响东北的北上温带气旋暴雪进行了统计研究。根据500 hPa环流形势分为低涡型、浅槽型和深槽型暴雪,并对这三种类型暴雪的气旋路径、强度变化、降水分布、水汽输送和热动力特征进行了详细分析。结果表明:低涡型和深槽型暴雪气旋路径为东北路,浅槽型暴雪气旋路径偏东,各类暴雪的气旋强度变化和降水分布因路径不同而有所差异;降雪最强时,低涡型和深槽型暴雪700和850 hPa都有低涡,浅槽型暴雪700 hPa为低槽。低涡型和深槽型暴雪中水汽通量散度辐合区与低层低涡气旋性闭合环流引起的辐合密切相关。浅槽型暴雪的水汽辐合源于槽前辐合;低涡型和深槽型暴雪发生在假相当位温暖舌中,浅槽型暴雪发生在较平直的假相当位温场中,深槽型和浅槽型暴雪的锋区要强于低涡型暴雪。降雪最强时,低涡型暴雪有1支高空急流,深槽型暴雪有2支高空急流,浅槽型暴雪高空急流有1支或2支。三类暴雪中心都位于北支高空急流入口区右侧或南支高空急流出口区左侧的位置。综合统计结果提出影响东北的北上温带气旋暴雪概念模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号