首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用2007-2020年的常规观测、东北地区6 h和24 h降水资料以及欧洲中期天气预报中心ERA5再分析资料,对东北地区温带气旋暴雪过程有/无大气河伴随进行了统计,并对比了有/无大气河伴随时环境场特征的异同。结果表明:83%的温带气旋暴雪过程有大气河伴随,其中59%的大气河登陆东北。11月和3月的暴雪过程大气河出现的频率最高,12月和1月基本无大气河伴随。南方气旋和黄淮气旋参与的暴雪过程大气河出现的频率高且强度强,相应的降水量较大;蒙古气旋暴雪过程大气河出现的频率低,降水量较小。有大气河伴随的暴雪过程高空急流有2支,低空急流强;500 hPa上有冷涡,形成切断低压和大气河相互作用有利于强降水的形势;850 hPa有明显的暖舌和较强锋区,因而有利于水汽输送和动力抬升,主要为冷锋降雨和暖锋降雪。无大气河相伴的暴雪过程高空急流有1支,低空急流弱;500 hPa上无冷涡,西风槽较弱;850 hPa锋区和低涡强度较弱,高空辐散和水汽条件差,主要为暖锋降雪。有大气河伴随时暴雪过程的水汽主要源自东海和黄渤海,低层不稳定层较厚,边界层水汽辐合区宽广且强,上升运动较强;无大气河伴随时水汽主要源自日本海...  相似文献   

2.
铜仁市暴雪发生的频次低,2005年至今仅发生5次,因此准确的量级和落区预报难度较大。本文选取2004-2021年铜仁市出现的5场暴雪天气过程,就大尺度环流形势、高低空天气系统配置和物理量特征进行分析,找出暴雪环流形势以及物理量预报指标。结果显示:铜仁市暴雪发生时,500hPa中高纬为两槽一脊形势,我国东北地区-日本海低槽加深发展,中低纬孟湾附近有南支低槽系统东移;海平面场上贝加尔湖西部冷高中心强度为1060hPa,大于1030hPa的等压线线进入铜仁市。暴雪落区出现在500hPa高空槽和南支槽前、700hPa西南急流左侧或低涡切变线南侧、850hPa东北急流或东北风前部的风速辐合区内。暴雪日500hPa温度平均低于-16℃,700hPa温度为-2~-6℃,850hPa温度-6~-8℃,地面气温为0~-4℃,地面气温越低降雪持续时间越长。暴雪发生时大气中层700~500hPa上升运动明显增强,这可作为降雪增大的预示指标;散度场总体表现为低空辐合、高空辐散的特征,当辐合层次伸展更高时,有利于暴雪天气的持续;水汽通量散度辐合主要在850hPa,平均值为-3.6×10-6﹒g﹒cm-2﹒hPa-1﹒s-1; 500hPa比湿值≥1.5g/kg是暴雪发生的参考指标。  相似文献   

3.
利用地面观测、高空探测常规资料、NCEP 1°×1°再分析以及FY-2G红外云图资料,综合分析了2016年11月10—13日北疆北部的暖区暴雪过程成因,结果表明,此次暴雪天气是在“单阻型”经向环流和有利的高低空天气系统配置下发生的,主要表现为500 hPa东欧阻塞高压脊稳定,西西伯利亚低涡和冷槽东南下至北疆境外的中亚地区,200~500 hPa低涡和冷槽系统深厚且呈前倾结构,低涡底部极锋锋区加强并压至北疆上空,700~850 hPa北疆北部有暖平流和暖脊发展,地面气压场呈“两高夹一低”形势,北疆在地面冷锋前部和暖锋后部的暖区内。中高层西北急流、低层偏西气流和偏东气流三支气流在暴雪区上空汇合,暴雪区位于高空低涡底部西北急流、低层暖平流和切变线、地面暖低压南部的高低空重叠区域内。500 hPa以下仅有一条西方水汽输送路径,最强水汽输送在600~700 hPa,最强水汽辐合位于850 hPa附近,最大暴雪中心(裕民)的水汽输送强度更强、厚度更厚、时间更长,其平均云顶黑体亮温TBB值较富蕴偏高10℃左右。  相似文献   

4.
利用地面观测、高空探测常规资料、NCEP 1°×1°再分析以及FY-2G红外云图,综合分析2016年11月10—13日北疆北部的暖区暴雪过程成因,结果表明:此次暴雪天气是在"单阻型"经向环流和有利的高低空天气系统配置下发生的,主要表现为500 hPa东欧阻塞高压脊稳定,西西伯利亚低涡和冷槽东南下至北疆境外的中亚地区,200~500 hPa低涡和冷槽系统深厚且呈前倾结构,低涡底部极锋锋区加强并压至北疆上空,700~850 hPa北疆北部有暖平流和暖脊发展,地面气压场呈"两高夹一低"形势,北疆在地面冷锋前部和暖锋后部的暖区内。中高层西北急流、低层偏西气流和偏东气流3支气流在暴雪区上空汇合,暴雪区位于高空低涡底部西北急流、低层暖平流和切变线、地面暖低压南部的高低空重叠区域内。500 hPa以下仅有一条西方水汽输送路径,最强水汽输送在600~700 hPa,最强水汽辐合位于850 hPa附近,最大暴雪中心(裕民)的水汽输送强度更强、厚度更厚、时间更长,其平均云顶黑体亮温TBB值较富蕴偏高10℃左右。  相似文献   

5.
利用NECP再分析资料、卫星云图资料、新一代天气雷达资料及实况观测资料对2010年4月12-13日一次东北低涡产生的黑龙江省暴雪天气过程进行分析,详细讨论了此次暴雪的发生机制及天气特点。此次降雪过程由地面气旋北上引发,高空低涡前部东风暖平流和槽后冷平流相遇形成暖锋锋生,低涡东北部产生暴雪。低空急流对水汽的输送作用和低层较强的辐合上升运动为此次降雪过程提供增强机制。云系的发展、移动与降雪有较好的对应关系,较大降雪出现在逗点云系顶部。  相似文献   

6.
辽宁两类降雪过程的对比及定量降雪预报指标   总被引:6,自引:3,他引:3       下载免费PDF全文
利用常规气象观测资料和NCEP1°×1°资料,普查辽宁省最近10 a来区域性暴雪、大雪、中雪天气过程,大致可分为北上水汽型和东北上水汽型两类。从环流背景、水汽和动力条件方面对比分析了2004年12月19日和2002年12月16日两次不同类型的降雪过程,发现北上水汽型降雪过程850 hPa比湿和水汽通量大,水汽条件强,动力条件相对弱;而东北上水汽型的降雪过程850 hPa比湿和水汽通量相对小,但动力抬升和辐合作用强。通过分析10 a来辽宁不同类型5场区域性暴雪、8场区域性大雪、9场区域性中雪的水汽条件和动力条件物理量阈值区间,发现北上水汽型降雪过程850 hPa比湿和水汽通量大于东北上水汽型同级别降雪过程,在降大雪量级时的850 hPa比湿和东北上水汽型暴雪过程相当;东北上水汽型降雪过程的最大螺旋度、850 hPa散度、最大垂直速度和850 hPa急流要强于北上水汽型,而且降雪级别越高差距越明显,其中暴雪量级最大垂直速度、850 hPa急流已经达到产生暴雨的动力条件。  相似文献   

7.
利用NECP再分析资料、卫星云图资料、新一代天气雷达资料及实况观测资料对2010年4月12-13日一次东北低涡产生的黑龙江省暴雪天气过程进行分析,详细讨论了此次暴雪的发生机制及天气特点。此次降雪过程由地面气旋北上引发,高空低涡前部东风暖平流和槽后冷平流相遇形成暖锋锋生,低涡东北部产生暴雪。低空急流对水汽的输送作用和低层较强的辐合上升运动为此次降雪过程提供增强机制。云系的发展、移动与降雪有较好的对应关系,较大降雪出现在逗点云系顶部。  相似文献   

8.
利用NCEP再分析资料,采用天气学诊断方法,对2009年11月10—12日石家庄地区出现的一次历史同期罕见区域性暴雪天气过程的环流特征和物理量场进行了探讨。结果表明:此次暴雪天气过程属典型的东北回流型降雪,地面从贝加尔湖南下冷高压与中国河套低压倒槽、700 hPa暖式切变线和500 hPa高空槽是主要影响系统。低空西南急流与超低空东北急流耦合,在为暴雪提供水汽和热量输送的同时加强了抬升运动。水汽的垂直输送导致局地比湿显著增大,深厚的湿层和强烈的水汽辐合为暴雪提供了充沛的水汽条件。"高空辐散、低空辐合"以及强劲的上升运动是暴雪的动力条件,降雪强度最大时段对应上升运动的强盛发展阶段。暴雪开始阶段云水含量的时空演变特征,一方面显示了水汽的迅速增加与爬升,另一方面也说明了地形的强迫抬升作用不容忽视。850 hPa温度低于700 hPa,有利于水汽经过此层时被凝华成固态。逆温层提前24 h出现,而且暴雪最强时段内两层温差均为5℃以上,这对暴雪预报具有指示意义。  相似文献   

9.
华北南部一次回流暴雪天气的诊断分析   总被引:1,自引:0,他引:1  
利用常规观测资料和NCEP再分析资料,对发生在华北南部的一次回流暴雪天气过程进行了动力、热力等诊断分析。结果表明:该回流暴雪天气属于华北回流中的两槽一脊型,导致这次强降雪的影响系统是高空急流、西来槽、低涡切变和低空急流,东北冷空气起到了触发作用。最大降水出现在南北风转换阶段,当东北风完全控制低层,降水结束。高空辐散和低层辐合相叠置及高空正涡度的下传,有强降水的产生,但上升运动中心较低。降雪前的增暖增湿与低层冷空气的楔入使华北南部位于θse能量锋区和水汽辐合区内,有利于强降雪的产生。回流天气的水汽主要来自于南方,低层东北冷空气也有间接输送水汽作用。  相似文献   

10.
利用NCEP再分析资料,采用天气学诊断方法,对2009年11月10—12日石家庄地区出现的一次历史同期罕见区域性暴雪天气过程的环流特征和物理量场进行了探讨。结果表明:此次暴雪天气过程属典型的东北回流型降雪,地面从贝加尔湖南下冷高压与河套低压倒槽、700 hPa暖式切变线、500 hPa高空槽是主要影响系统。低空西南急流与超低空东北急流耦合,在为暴雪提供水汽和热量输送的同时加强了抬升运动。水汽的垂直输送导致局地比湿显著增大,深厚的湿层和强烈的水汽辐合为暴雪提供了充沛的水汽条件。“高空辐散、低空辐合”以及强劲的上升运动是暴雪的动力条件,降雪强度最大时段对应上升运动的强盛发展阶段。暴雪开始阶段云水含量的时空演变特征,一方面显示了水汽的迅速增加与爬升,另一方面也说明了地形的强迫抬升作用不容忽视。850 hPa温度低于700 hPa,有利于水汽经过此层时被凝华成固态。逆温层提前24 h出现,而且暴雪最强时段内两层温差均为5 ℃以上,这对暴雪预报具有指示意义。  相似文献   

11.
利用常规观测资料和NCEP(1°x1°)再分析资料,对2020年2月发生在内蒙古的一次地面回流与倒槽共同作用下的暴雪天气过程进行详细分析。结果表明:本次暴雪过程的主要影响系统是高空槽、700hPa切变线、高低空急流、地面冷高压、倒槽和冷锋。在高空下沉气流及1000~800hPa上东北急流的共同作用下,干冷气流形成“冷垫”,迫使暖湿空气沿冷垫抬升,同时不断的有干冷空气向中低层暖湿气流下方入侵,与中高层的西南急流形成深厚的锋生区和锋面次级环流,二者的正反馈作用为暴雪提供增幅作用。700hPa西南急流不断输送水汽,暴雪区位于比湿、水汽通量和水汽通量散度辐合的大值区。低层辐合高层辐散,配合显著的上升气流,有利于水汽积聚与输送和上升运动。强锋生落区与暴雪区域相对应,其中水平变形作用项对锋生的贡献最大,垂直运动项对锋生的贡献最小。湿位涡在强降雪落区内MPV1>0, MPV2<0,有利于本次暴雪过程的发生,高空下传的正MPV1会引起低层冷空气加强,冷暖空气对比度加大,有利于锋生,同时湿斜压性增强,诱发气旋式环流,进一步增强降雪。  相似文献   

12.
利用常规气象观测、FY-4A卫星及ERA5再分析数据,对比分析2021年2月25—27日(过程I)和4月1—4日(过程II)西天山南麓阿克苏地区拜城县2次暴雪过程成因。结果表明有差异也有共性,共性为均在中亚低值系统影响下发生,300 hPa偏西急流、500 hPa低涡(低槽)、850 hPa偏东急流、地面冷高压冷锋及暴雪区上空垂直环流的发展是形成暴雪的主要动力机制;均有偏西和西南路径的水汽输送,水汽强辐合出现在700 hPa;降雪期间TBB极值、<-30 ℃的维持时间及>-5 ℃对降雪量级、持续时间及降水相态预报有很好的指示意义。不同点主要表现在:(1)过程I为中亚低槽快速东移型,偏东急流仅在850 hPa,急流强度较弱且位置偏南,过程II为中亚低涡缓慢东移型,700 hPa、850 hPa有明显偏东急流且持续时间长,位置西伸至西天山南麓阿克苏地区;(2)与过程I相比,过程II上升运动中心更接近暴雪中心,且强度强、伸展高、持续时间长,冷暖交汇更剧烈,暖平流导致降水相态发生变化,偏东水汽输送明显且辐合强度更强、辐合持续时间更长。  相似文献   

13.
乌鲁木齐暴雪在天山北坡暴雪天气中强度更强、频次更高,具有较好的代表性,本文选取近些年来乌鲁木齐最强的3场暴雪天气过程,就大尺度环流形势、高低空天气系统配置和中尺度天气系统对比分析。结果显示:乌鲁木齐暴雪出现在经向环流转纬向或环流经向度减弱的大尺度环流背景下,主导系统欧洲高压脊东南衰退过程中乌拉尔山低槽东南下,均存在南支低值系统配合,暴雪均出现在500 hPa槽前西南急流前部、700~850 hPa西北急流前部和300 hPa高空急流右侧的风速辐合区内,给出暴雪环流形势和高低空天气系统的三维空间结构和天气模型。乌鲁木齐暴雪天气发生时雷达回波图像显示,中低层均有风场辐合,回波强度和中低层风场辐合越强,回波顶高越高,降雪强度越大。3场暴雪均出现在卫星云图中尺度云团边缘云顶黑体亮温TBB等值线梯度最大处附近,TBB等值线梯度越大,降雪越强。最强降雪发生前的4~6 h,中低层4 000 m以下上升运动明显增强,700 hPa以下低层上升运动增强可作为强降雪出现的预示指标。  相似文献   

14.
应用常规地面、探空观测资料和NCEP 1°×1°再分析资料,对2011年11月28-29日山西低空偏东风暴雪天气结构特征进行了探讨。结果表明:(1)这次低空偏东风暴雪是由高空西风槽、低空切变线、地面回流和倒槽共同影响造成。降雪前约18 h,山西925~850 hPa上空出现东北风;降雪前约12 h,山西中南部地面出现较强东北风,强降雪期间地面东北风强劲;降水开始前,低空东北风是干冷性质,降水开始后低空东北风是湿冷垫。(2)暴雪的水汽来源主要是源于西太平洋的偏东风水汽输送在北部湾附近转向的西南水汽与南支槽前的西南气流在西南地区汇合北上,再与西风槽前西南水汽结合;强降雪出现在700 hPa水汽通量中心西北侧等值线密集区且风向气旋性辐合的偏南气流区域。(3)强降雪伴随山西上空深厚湿层、500 hPa以下明显水汽辐合,以及800 hPa以上对流层中强上升气流,而上升区下是明显的下沉气流,这是由低空偏东风的契入产生的。(4)强降雪期间300 hPa西风急流不断东移南压,山西位于其入口区右侧,出现强辐散,有利于地面河套倒槽发展、维持,以及垂直上升运动的增强。  相似文献   

15.
甘肃东部一次暴雪过程的诊断分析和数值模拟   总被引:3,自引:0,他引:3  
应用NCEP1°×1°的6 h再分析资料和常规气象观测资料以及RUC模式高分辨资料,对2013年2月17日甘肃河东暴雪天气从天气实况、环流特征、水汽条件、动力条件及西北区域RUC模式输出的模拟结论进行了诊断分析。结果表明:高空冷槽、700 hPa低涡、地面冷锋是这次暴雪的主要影响系统;降雪前期,低层正涡度增强,低层辐合、高层辐散是暴雪发生的动力机制;降雪前期,由于低涡辐合作用,700 hPa高度以下,湿度猛增,为降雪提供了充沛的水汽条件;降雪中心和政上空有θse密集强能量锋区;西北区域RUC模式模拟的24 h内降水量范围、落区、量级与实况一致,模拟的地面风速偏大。  相似文献   

16.
2010年11月20日20时到21日08时锡林郭勒盟东北部出现了暴雪天气过程,这次暴雪是在两脊一槽的环流形势中西来斜压槽配合地面蒙古气旋产生的,属强冷空气类。极涡的维持使斜压槽加强,移动缓慢;在印缅槽维持的西南环流场中,700hPa西南槽为华北建立了水汽通道,暖湿的低空西南急流提供了较好的水汽和能量不稳定条件;高低空急流耦合产生了动力抬升作用,大、暴雪就发生在高空急流入口区右侧,低空急流左侧的耦合区。逆温层和高能舌的存在为暴雪的发生储备了潜在能量。  相似文献   

17.
利用中国气象局MICAPS地面、高空等常规观测资料及欧洲中心ERA-Interim的0.25°(纬度)×0.25°(经度)逐6 h再分析资料,对2015年11月5日至7日影响北京、河北的一次降雪过程的环流形势和动热力物理量进行了诊断分析,揭示了降雪特征及其形成原因。环流形势分析发现,此次降雪是在高空两槽一脊叠加短波槽活动天气背景下的“回流型”降雪。500 hPa有西伯利亚脊的发展和内蒙古地区气旋性涡旋及其向南发展出的弱槽,使得偏北冷空气与西南暖气流在河北地区相遇,伴随低层700 hPa的低涡发展,造成了此次降雪天气。500 hPa多小槽波动东移,使得雨雪天气维持较长时间;700 hPa受偏南暖湿气流影响,850 hPa为偏东风,地面高压底部偏东风配合倒槽,有较好的上升运动和水汽输送条件;高湿的大气环境条件和低层水汽辐合及抬升为降雪发生提供了充沛的水汽;高低空急流的形成,与散度场、涡度场和垂直速度场的高低空耦合配置,为降雪天气的发生创造了动力条件。  相似文献   

18.
利用气象观测资料、NCEP再分析资料、GDAS资料,结合HYSPLIT模式分析2018年1月3—4日鄂北地区大暴雪的异常环流形势和水汽输送特征。结果表明:1)100 hPa极涡向亚洲东北部分裂,极锋急流位置偏南,500 hPa乌山的阻塞形势和偏强偏东的东亚大槽,有利于将强冷空气向我国中东部输送;700 hPa强盛的西南急流配合850?hPa偏东风辐合,提供有利的动力、水汽;地面冷高压势力偏强,从东路南下并不断补充,有利于降雪天气长时间的维持。2)整层水汽通量高值舌从华南沿海伸至长江沿线,鄂北地区水汽输送强度、水汽辐合偏强;4条水汽输送路径分别是650 hPa干冷空气在黄海转向从东北路输送水汽,水汽贡献率排第二;650~700 hPa气团将孟加拉湾的水汽输送至暴雪区,水汽贡献率排第一;500 hPa干冷空气自偏西方向过来,水汽贡献率最少;近地层暖湿气团将南海水汽自偏南路径输送至暴雪区,水汽贡献率排第三。与一般降雪过程比,增加了偏南的输送路径,且水汽贡献最多和次多路径的气团水汽含量更高。  相似文献   

19.
新疆北部暖区强降雪中尺度环境与落区分析   总被引:1,自引:0,他引:1  
利用常规气象观测资料、ECMWF、T639(1°×1°)再分析资料和FY-2C卫星云图资料,对2003—2013年11月至次年3月新疆北部出现26次12 h暖区强降雪天气过程的中尺度环境场特征和降雪落区进行了分析。结果表明:强降雪产生在极涡型和短波低槽型两种环流形势下,强降雪区位于低槽前部,低空急流出口区前侧辐合区和高空急流入口区右侧辐散区以及700 hPa和850 hPa辐合线和暖切变线东部、北部及干线东南部,地面辐合线附近减压升温的重叠区域内。强降雪区上空,对流层整层为80%高湿区;500 hPa以下具有不稳定层结、风垂直切变大、斜压性强;700hPa辐合线和850 hPa暖切变线及干线、地面干线及辐合线易触发不稳定能量的释放,从而为暴雪的产生提供水汽、热力和动力条件。暖区强降雪主要发生在中尺度冷云团开始缓慢减弱东移的前部及云顶亮温TBB梯度最大区域的前部。通过上述分析总结出暖区强降雪落区三维空间配置模型。  相似文献   

20.
利用MICAPS常规资料和NCEP再分析资料,对2013年7月辽宁省降水异常物理机制进行了研究。结果表明:2013年7月辽宁省降水偏多发生在异常环流背景下,乌拉尔山高压脊和贝加尔湖低压槽强度大于常年,冷空气偏强且路径偏南;东亚40°—50°N处在纬向强锋区中,有利于气旋生成发展;副热带高压脊线比常年偏北2个纬度,西北侧暖湿气流活跃。7月中高纬地区有3次明显冷空气向南侵入至40°N,与中低纬北上至40°N及以北的暖湿气流交绥形成暴雨,影响系统分别为华北气旋、蒙古气旋冷锋和副热带高压西侧辐合线,不同影响系统暴雨过程的物理机制存在差异。3次暴雨过程中,华北气旋暴雨水汽供应最充沛,水汽源地不仅有西太平洋、南海、东海和黄海,还有孟加拉湾;暴雨区水汽主要由副热带高压外围西南或偏南气流向北输送,东海北部和黄海是水汽汇合及输送量最大的区域。高空急流受贝加尔湖低槽强度影响,不同影响系统高空急流演变和强度不同,低空急流分布与强度及高空辐散区、低空辐合区相对高、低空急流轴分布的位置也不同;高、低空急流耦合发展及高空辐散区、低空辐合区叠置产生的强垂直上升运动造成了水汽强烈辐合,其中华北气旋暴雨水汽辐合最强,水汽辐合层顶达850hPa,蒙古气旋冷锋和副热带高压西侧辐合线暴雨水汽辐合顶在900hPa附近及以下。热力分析表明,3次暴雨过程环境大气中层均有干冷空气侵入,增加了降水对流的不稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号