首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
使用T213和T639产品为初始场和边界条件,采用完全相同的物理过程和方案,驱动GRAPES区域模式,对2009年4—9月在新疆温度与降水预报的结果进行了对比检验,检验结果表明:(1)使用T639产品为初始场,24 h降水Ts评分平均值较T213产品为初始场的提高5分,晴雨准确率提高20分,但漏报率也上升了。T213和T639为初始场时各站的降水Ts评分,其空间分布情况均体现出北疆西部、天山山区最好,南疆最次,其它地区居中。Ts评分提高的站点主要分布在天山山区及沿天山一带。(2)使用T639产品为初始场,逐小时温度预报1℃、2℃准确率分别提高了约15分和28分,预报平均误差均为负值。预报准确率提高较明显的站主要集中在天山山区及两侧,南疆提高总体优于北疆,2℃准确率的提高比1℃更为显著。  相似文献   

2.
对新疆快速更新循环数值预报系统2009年1、12月和2010年1、4、7、10月份的降水量和气温进行了检验,并与不做同化的预报结果进行了对比,得到以下结果:(1)降水Ts评分北疆好于南疆,偏西好于偏东,其中北疆西部、北部、北疆沿天山一带、天山山区、南疆西部山区最好。漏报率的分布表现为北疆沿天山一带、天山山区较小,南疆、东疆较大。空报率的情况为:南疆、东疆普遍较高,北疆沿天山一带较低,其他地区居中。(2)典型个例检验发现降水落区预报有较好的参考价值,但大降水中心位置的预报能力不稳定,和田、巴州南部的空报现象比较突出。(3)温度预报准确率南疆、东疆总体偏低,北疆西部、北部较高,其他地区居中,个别山区站存在较大误差。(4)现行新疆快速更新循环数值预报系统的预报能力不比不采用同化高。  相似文献   

3.
利用MM5、T213和Grapes3种数值模式的降水预报产品和山西省108个标准测站的降水实况资料,采用客观统计检验方法,对2008年7月各模式在山西省的累加降水预报进行了对比检验。结果表明:24h中雨以下预报1、213优于MM5,中雨以上MM5则略优于T213,48h预报各级降水MM5都优于T213,T213和MM5对暴雨都有一定的预报能力。无论哪个预报时效和降水量级,Grapes均无明显优势。Grapes预报降水量级和降水范围都偏小,空报较少,漏报严重,尤其48h和72h10mm以上降水基本都漏报。MM5预报降水量级和预报范围都偏大,10mm以上降水TS评分较其它模式高,但同时空报也比较严重。3种模式TS评分均随降水量级的增大而减小,T213和Grapes的TS评分随预报时效的增加而减小,MM5的TS评分随预报时效的增加变化不大。  相似文献   

4.
对12h24mm以上强降水带的预报,模式输出的降水资料是预报的重要依据,但有时偏差较大。依据中尺度分析技术,利用常规资料、EC细网格和T639模式12h预报场对2013年夏季发生在北疆北部的2次区域强降水过程中12h最强降水时段的环境场进行中尺度分析。结果表明,中亚低槽北上强降水落区位于500和700hPa中尺度气旋的第一、四象限及对流层低层冷槽的右侧,850hPa切变线附近,地面中尺度高压前部、边界线和切变线附近及干线西侧的重合区域。西西伯利亚低涡型暴雨位于中尺度短波槽前、高空西南急流出口区左侧辐散区,700和850hPa切变线西侧及干线西南部,850hPa偏西、偏东及东南3股气流汇合区,地面干线的西部、辐合线东部及切变线附近的重叠区域。中亚低槽北上暴雨天气为非典型暴雨易漏报。用模式12h预报场制作高空综合图,可提高预报时效,EC细网格优于T639模式。  相似文献   

5.
T639数值产品对影响新疆主要系统的预报检验评估   总被引:3,自引:1,他引:2  
使用T639L60模式2009—2010年1°×1°分辨率72 h预报时效内的高度场预报产品及ECMWF客观分析场,采用天气学检验方法,对新疆主要天气影响系统(西西伯利亚低槽、乌拉尔大槽、北方横槽和中亚低值系统)数值产品的预报能力进行检验。主要从影响系统生成时间、中心强度、槽线位置、移动速度4个方面进行检验。检验结果表明:T639模式对新疆影响系统具有较好的预报性能,尤其对48h内的预报能力非常高。但因影响系统和预报时效不同其预报能力也有较大差异,对越深厚的低槽系统,T639模式的预报效果越好;T639产品对西西伯利亚低槽和乌拉尔大槽出现时间预报偏早的较多,而北方横槽和中亚低值系统偏晚的多;对西西伯利亚低槽和中亚低值系统槽线位置预报偏快的较多,而乌拉尔大槽和北方横槽偏慢的多。  相似文献   

6.
随着精细化降水预报的要求和发展,模式对站点定量降水预报已成为天气预报业务的主要参考依据之一。本文对乌鲁木齐区域数值天气预报系统DOGRAFS v1.0在2016年夏季全疆105个站点的24h累积降水量的预报性能进行统计检验。结果表明:(1)除山区外,全疆晴天预报准确率达到85%以上,其中南疆盆地、吐鄯托盆地晴天预报准确率达到95%以上。(2)对于小雨出现较多的站点,预报准确率达到55%以上、部分站点达到70%,同时上述区域存在15%左右的报强率;对于降水较少的南疆盆地和吐鄯托盆地整体以漏报为主,漏报率在80%以上。(3)北疆大部分地区和南疆西部山区的中雨预报准确率整体在30%左右;中雨日数较多的中天山及其两侧预报准确率约60%,该区域也存在20%左右的报强率;其他地区预报降水较实况以偏弱为主。(4)大雨及以上量级降水,模式预报整体表现为偏弱,对于大降水出现较多的地区预报平均准确率为25-30%。  相似文献   

7.
利用常规气象观测、FY-4A卫星及ERA5再分析数据,对比分析2021年2月25—27日(过程I)和4月1—4日(过程II)西天山南麓阿克苏地区拜城县2次暴雪过程成因。结果表明有差异也有共性,共性为均在中亚低值系统影响下发生,300 hPa偏西急流、500 hPa低涡(低槽)、850 hPa偏东急流、地面冷高压冷锋及暴雪区上空垂直环流的发展是形成暴雪的主要动力机制;均有偏西和西南路径的水汽输送,水汽强辐合出现在700 hPa;降雪期间TBB极值、<-30 ℃的维持时间及>-5 ℃对降雪量级、持续时间及降水相态预报有很好的指示意义。不同点主要表现在:(1)过程I为中亚低槽快速东移型,偏东急流仅在850 hPa,急流强度较弱且位置偏南,过程II为中亚低涡缓慢东移型,700 hPa、850 hPa有明显偏东急流且持续时间长,位置西伸至西天山南麓阿克苏地区;(2)与过程I相比,过程II上升运动中心更接近暴雪中心,且强度强、伸展高、持续时间长,冷暖交汇更剧烈,暖平流导致降水相态发生变化,偏东水汽输送明显且辐合强度更强、辐合持续时间更长。  相似文献   

8.
本文使用2009~2012年新疆冬季43场暴雪天气过程中ECWMF和T639L60(2.5*2.5)数值预报产品预报场资料,通过天气学检验方法,对新疆主要影响系统,即西西伯利亚低槽、乌拉尔山大槽、北方横槽、中亚低值系统和其对应的高空500hPa形势、海平面气压做72小时内的滚动预报场与相对应实况场的检验。检验结果表明:两家模式对于高空500hPa形势场预报都比较好,尤其是48h之内,ECWMF的准确率略高于T639;海平面气压场两家模式的预报准确率均低于500hPa形势场,T639要优于ECWMF,尤其是48h之内,一般海平面气压中心强度的预报值较实况会有偏小3~5hPa的误差,以上结论可较好地指导预报业务。  相似文献   

9.
为了了解各种数值模式要素预报在2012年6月第三届亚沙会(亚洲沙滩运动会)比赛期间表现如何,对2011年4—6月MM5,WRF—RUC和T639模式亚沙会比赛场地的海阳气象观测站24h降水量、10m日最大风速以及2m日最高最低温度预报进行了检验,检验还包括了t70nline(天气在线)2m日最高最低温度预报,结果表明:(1)各模式晴雨预报基本都在70分左右。WRF-RUC模式一般性降水和小雨预报效果最好。对于中雨,各模式空、漏报均较多。大雨以上量级降水,各模式均有一定的预报能力。WRF—RUC和T639模式均较好地预报出大雨和暴雨过程,MM5略差,但各模式均空报大暴雨过程。(2)4级以下的弱风T639模式预报准确率最高,MM5和WRF-RUC模式空报较多;对于4级以上风,MM5和WRY-RUC模式预报效果较好,T639模式漏报较多。结合最大风速预报误差看,MM5和WRF-RUC模式相差不多,预报效果最好,T639模式预报误差最大。(3)WRF。RUC模式最高温度预报准确率最高,t70nline最低温度预报准确率最高。各模式最高最低温度平均误差均为负值,即模式预报比实况均偏低。  相似文献   

10.
复州湾盐场春晒期降水中尺度数值预报试验   总被引:1,自引:0,他引:1  
选择中尺度数值预报模式(MM5),对复州湾2000年海盐春晒期降水个例进行了48h预报降水试验,试验表明:MM5对复州湾海盐春晒期的降水具有一定的预报能力。可提高海盐春晒期的降水预报准确率。  相似文献   

11.
GRAPES-REPS西南低涡预报检验评估   总被引:5,自引:4,他引:1  
王静  陈静  钟有亮  张进  李晓莉 《气象》2017,43(4):385-401
利用2015年6—8月GR APES-REPS(Global/RegionalAssimilation and Prediction System-Regional Ensemble·Prediction System)区域集合预报资料,并设计西南低涡格点资料客观识别方法对西南低涡中心位置进行定位,首先评估GRAPES控制预报对西南低涡的预报准确性,之后挑选出四次生命史较长的西南低涡过程,分析评估GRAPES-REPS对西南低涡发生、发展、移动及降水过程集合预报性能。结果表明:(1)GRAPES模式对西南低涡预报的命中率较高,空报率略大于漏报率。(2)GRAPES-REPS对西南低涡发生和发展的预报效果较好,绝大部分集合预报成员能预报西南低涡发生和发展过程,但对西南低涡发生时间预报总体偏早。(3)GRAPES-REPS对西南低涡移动路径在24 h预报时效内比较合理,且集合预报平均明显优于控制预报,24 h之后东移型西南低涡移动路径明显偏北。(4)GRAPES-REPS对西南低涡强度预报总体偏强,表现为中心正涡度值偏大,位势高度值偏低。(5)24 h预报时效内,西南低涡触发的小雨到大雨量级的降水概率评分均有较好表现,且落区与实况接近,而暴雨落区个别略有偏北,但基本吻合。24 h之后,由于东移型西南低涡移动路径偏北导致模式预报降水落区偏北。可见,模式对西南低涡强降水有一定预报能力,因此,提高GRAPES-REPS中尺度集合预报能力,将有助于改进西南低涡强降水预报。  相似文献   

12.
利用新疆天山山区及其以北地区(北疆)45个气象站1961-2010年冬季逐日最低气温资料,提出了45站低温日标准和区域性持续性低温事件的定义,并分析了持续性低温事件的时空分布和变化特征,研究了低温事件的年代际变化环流差异特征、大尺度环流背景、冷空气影响路径及强度特征。结果表明:(1) 低温日阈值呈东北向西南升高的分布趋势,低温日阈值最小值分布于准噶尔盆地和新疆北部阿勒泰地区,阈值为-34~-30℃,而西部伊犁地区和天山山区低温日阈值为-24~-20℃;(2) 1961-2010年出现35次大范围持续性低温事件,1月和2月发生频次均为0.29次/年,12月为0.14次/年;低温事件持续时间为5~25 d,其中超过10 d有16次,5~9 d有19次。持续性低温事件发生频率呈年际和年代际显著减少趋势,但强度无显著变化趋势;(3) 北半球大范围环流异常造成新疆持续低温事件,以经向环流异常为主,根据冷空气影响路径可分为4类:西西伯利亚横槽、中西伯利亚低槽东灌、北风带和西北风带、北脊南槽(涡),这4类冷空气影响路径表现为500 hPa冷空气从极地或西伯利亚以超极地、西北和偏东路径进入新疆后,-32℃冷空气南压位于北疆地区,海平面气压场同时表现为蒙古高压盘踞欧亚大陆,高压中心达1045 hPa以上且位于阿勒泰山地区,1035 hPa冷高压控制北疆地区,这种环流配置造成新疆持续性低温事件。  相似文献   

13.
天山山区近40a年降水变化特征与南、北疆的比较   总被引:24,自引:2,他引:24       下载免费PDF全文
袁玉江  何清  喻树龙 《气象科学》2004,24(2):220-226
本文分析了天山山区近40 a来年降水变化的基本特征,并与南疆、北疆进行了比较,所得的主要结果如下:(1)天山山区在年降水量干湿变化阶段上与北疆的相似性强于南疆。(2)年降水量的空间分布的同步变化性以北疆为最好,南疆最差,天山山区居中,而年降水量的空间分布的反向变化性,以天山山区为最大,北疆最小,南疆居中。(3)天山山区与南疆从60年代到90年代,年降水均表现出了持续的增加的趋势,北疆年降水从60年代到90年代,除70年代外,不断增多。  相似文献   

14.
应用国家基本观测站资料、自动站逐时降水资料,基于客观统计检验方法,针对降水(12h、24h累积雨量)、近地面要素(2m温度、10m风)和高空要素(风场、温度场、高度场),分别评估SWCWARMS模式和GRAPES模式对2015年西南地区预报能力,得到如下几点结论:(1)SWCWARMS模式降水ETS评分高于GRAPES模式,除24h小雨外SWCWARMS模式偏差值均高于GRAPES模式,两个模式在不同预报时效内对中雨、大雨、暴雨都表现一定程度的空报;(2)12h降水分段评分上,SWCWARMS模式TS评分均高于GRAPES模式,但SWCWARMS模式预报降水范围过大,随着预报时效增长空报多于GRAPES模式;SWCWARMS模式中雨和大雨空报大于其它量级降水,GRAPES模式对大暴雨漏报较多其它量级降水表现为空报;(3)两模式对高度场和温度场预报优于风场,对对流层中层预报优于中低层,SWCWARMS模式对高度场和温度场预报优于GRAPES模式,夏半年SWCWARMS模式均方根误差小于GRAPES模式;(4)两模式都表现出2m温度均方根误差在秋季增加而春季减小这一特征,SWCWARMS模式近地面要素均方根误差均小于GRAPES模式。   相似文献   

15.
韩余  周国兵  向鸣 《气象科技》2007,35(2):180-186
利用中国气象局的中尺度模式GRAPES和美国国家大气研究中心的MM5模式,对2004年9月初发生在重庆地区的特大暴雨过程进行了模拟预报。结果表明,GRAPES和MM5模式都较成功的预报出了此次降水过程。但是在降水中心的分布以及降水量级上与实况仍有一定程度的差异,GRAPES模式模拟出的总体落区略优于MM5,而MM5对降水量级的预报好于GRAPES。通过对环流形势的分析发现,MM5预报的垂直速度大于GRAPES的预报结果,这可能是导致降水量级差别的原因之一;通过对模式结果的初步诊断分析发现,两个模式对不稳定条件的模拟结果影响了他们对落区的预报结果。  相似文献   

16.
运用西南区域数值模式SWCWARMS、欧洲中心细网格预报模式EC以及国家气象中心中尺度区域模式GRAPES对2018年6月25日12时~26日12时发生在四川盆地内的一次强降雨过程进行预报对比分析,多模式结果表明:EC模式与GRAPES模式对盆地西北部的暴雨漏报现象较为突出,SWCWARMS模式能较好模拟整个雨带的强度与位置,对比中尺度系统西南涡的模拟,在低涡出现和发展的12小时内,EC模式对低涡的预报能力偏弱,预报降雨量偏小,低涡位置与强度预报GRAPES与实况最接近,SWCWARMS模式与GRAPES相似,但仅有SWCWARMS预报出低涡南侧与低涡西北象限的强降雨,在低涡减弱阶段,3种模式趋于相同。EC与GRAPES模式在四川盆地内的初始涡度偏弱,辐合偏小,盆地西部边坡对流层低层垂直上升运动偏小,相对湿度偏低,这导致了EC和GRAPES模式在四川盆地西部边坡降雨强度偏小,仅有SWCWARMS模式与实况最符合,尤其对复杂地形下的降雨过程有较强的预报能力。   相似文献   

17.
Early and effective flood warning is essential for reducing loss of life and economic damage.Three global ensemble weather prediction systems of the China Meteorological Administration (CMA),the Europe...  相似文献   

18.
WRF和MM5模式对辽宁暴雨模拟的对比分析   总被引:5,自引:0,他引:5  
刘宁微  王奉安 《气象科技》2006,34(4):364-369
用近年开发的新一代中尺度预报模式WRF(Weather Research Forecast)和已被广泛应用的MM5模式分别模拟研究了2002年8月3~4日发生在辽宁的一次区域性暴雨过程。模拟结果显示WRF模式能够比较成功地反映出导致暴雨发生的高低空环流背景和暴雨的分布状况;WRF和MM5模拟结果的对比分析表明:由于WRF的动力框架具有一定的优越性使得模式结果得到改善,在前处理和所选物理过程相同的情况下,WRF模式对能够代表本次暴雨过程中中尺度天气系统的高度场、风场、散度场、水汽通量场以及垂直速度场等物理量的模拟效果要好于MM5。高空形势场的影响使WRF模拟的降水落区和强度更接近实况。  相似文献   

19.
三峡库区流域面雨量预报模糊检验   总被引:3,自引:2,他引:3       下载免费PDF全文
周国兵 《气象科技》2005,33(2):120-123
采用面雨量模糊评分方法,对三峡库区流域面雨量预报中3种客观预报(相似预报、T213降水预报、MM5模式预报)和面雨量综合集成预报结果进行综合评定。检验结果表明,3种预报模式对流域面雨量预报水平相差不大,冬半年的预报评分高于夏半年。在业务中采用动态权重系数法对3种预报方法预报结果进行集成,其集成预报的评定质量高于每种单独预报质量。在流域面雨量预报质量检验中采用了模糊评分法,该方法能够较为客观地反映预报和实况之间的差距,也可以用于降水定量预报评定中。  相似文献   

20.
应用GRAPES模式对贵州暴雨过程的模拟试验   总被引:6,自引:1,他引:6  
伍红雨  陈德辉 《气象》2006,32(12):29-35
利用我国新一代数值预报模式GRAPES(Global/Reglional Assimilationand Prediction Enhanced System),对2004年发生在贵州的3次强降水过程,即6月23—24日、7月17—18日和7月21—22日的暴雨过程进行了数值模拟,并与实况资料进行对比分析。模拟结果表明:GRAPES模式成功地模拟了这几次降水过程中的主要天气系统的位置和移动过程,如西南低涡的加强、较强的低空急流、低空气流辐合以及高空槽过境等,因此较好地模拟出暴雨的落区和分布特征。但对强降水的模拟与实况有一定差异,对局地暴雨的模拟偏小。模拟试验分析可见:GRAPES模式对贵州暴雨有预报能力,有较好的参考作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号