首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Land-surface Process Model(LPM-ZD)has been successfully coupled with the regionalclimate model RegCM2 of NCAR.Then thus-obtained coupled model(CRegCM)has been appliedto simulate the climate characteristics of heavy rain in middle and East China for three months fromMay to July 1991.and compared with model output of NCAR-RegCM2 using BATS as land-surface process scheme,abbreviated as NRegCM.The results show that CRegCM has good abilityand performance.CRegCM successfully simulates the extreme precipitation event and thesimulations of CRegCM for surface temperature and some physical variables related to land surfaceprocess are more reasonable than those of NRegCM.  相似文献   

2.
有关雪盖模型内部及界面过程的参数化方案的敏感试验   总被引:4,自引:0,他引:4  
In order to develop a seasonal snow model of land surface process as accurately as possible for climatic study, it is necessary to fully understand the effects of important snow internal processes and interaction with air and to get an insight into influence of several relevant parameterization schemes with parameters' uncertainty to some degree. Using the snow model (SAST) developed by first author and other one and some useful field observation data, this paper has conducted a series of sensitivity studies on the parameterization schemes. They are relative to compaction process, snow thermal conduction, methodology of layering snow pack and to key parameters such as snow albedo, water holding capacity. Then, based on the results from the sensitivity studies, some useful conclusions for snow cover model improvement are ob tained from the analysis of the results.  相似文献   

3.
The advanced distributed hydrology-soil-vegetation model DHSVM,developed by Wigmostaet al.(1994)is introduced from US Pacific Northwest National Laboratory.To apply DHSVM inChina for the first time some improvements have been made in terms of the basin characteristics:1)to change evapotranspiration model,using the improved Penman-Monteith approach in place ofthe original one;2)to change the model structure,inserting datasets from 4 stations to grid cellsfor each river basin,instead of datasets from one or two stations;3)to develop new hydrology,vegetation and soil parameterization schemes for improving the simulated results,with focus oncalculation and adjustment of 11 parameters,such as soil porosity (?),field capacity θ_(fc),leaf areaindex LAI,stochastic resistance γ_s,among the total 33 parameters.Then the improved DHSVM isdriven by observed datasets for Luanhe River Basin and Sanggan River Basin,respectively.Thesimulated evapotranspiration(ET),runoff,snow water equivalent,water table,soil moisture andpercolation are then gained as DHSVM outputs.The simulated ET shows that the highest peakappears in May or June instead of July or August.This is consistent with the real situations,owing to the improvement of ET model.The simulated runoff process and flood peak are quiteconsistent with the observed ones.The model efficiency values for Luanhe River and SangganRiver Basins are 0.89 and 0.82,respectively,which shows high simulating ability of the modelsystem for both relatively humid and dry basins.  相似文献   

4.
In this paper,an interactive model between land surface physical process and atmosphereboundary layer is established,and is used to simulate the features of soil environmental physics,surface heat fluxes,evaporation from soil and evapotranspiration from vegetation and structures ofatmosphere boundary layer over grassland underlying.The sensitivity experiments are engaged inprimary physics parameters.The results show that this model can obtain reasonable simulation fordiurnal variations of heat balance,soil volumetric water content,resistance of vegetationevaporation,flux of surface moisture,and profiles of turbulent exchange coefficient,turbulentmomentum,potential temperature,and specific humidity.The model developed can be used tostudy the interaction between land surface processes and atmospheric boundary layer in cityregions,and can also be used in the simulation of regional climate incorporating a mesoscalemodel.  相似文献   

5.
To build land surface dataset for climate model,with application of remote sensing techniqueas well as the Geographic Information System(GIS),the data of surface type,roughness andalbedo over China in 1997 were retrieved,resolutions being 10 km×10 km.Based on these data,an analysis is conducted on the geographic distributions and seasonal variations of surfacevegetation cover and roughness as well as albedo over China.Results show that surface vegetationcover is mainly located to the south of Yangtze River,in Southwest and Northeast China andsparse vegetation cover is in the Northwest.The variation of land surface cover affects thevariations of land surface roughness and albedo.High albedo occurred in the north of XinjiangAutonomous Region,the north of Northeast China and the Qinghai-Xizang Plateau in winter,incorrespondence with the location of snow cover.For most part of China,surface roughness decreases and albedo increases in winter,while theroughness increases and the albedo decreases in summer,which could mainly result from landsurface cover(snow cover and vegetation cover)and soil moisture changes.This shows that thegeographic distribution and seasonal variation of the albedo are almost opposite to those of theroughness,in agreement with theoretical results.Temporally,the amplitude of surface roughnesschange is quite small in comparison with the roughness itself.  相似文献   

6.
7.
The atmospheric general circulation model coupled to the mixed layer ocean model has been used to simulate thechanges of the global soil moisture.Comparing the simulated results with observations,it is shown that the model is ca-pable of doing sensitive experiments about the carbon dioxide change.The 2×CO_2/1×CO_2 comparison shows that there are the obvious changes of the soil moisture in the global forfour seasons.There are the wet soil moisture in the lower latitudes of both hemispheres and dry soil moisture in the mid-dle latitudes of both hemispheres for four seasons.The dry soil moisture in summer and wet in other seasons are foundin the northern higher latitudes.The analyses of the physical feedbacks responsible for the CO_2-induced changes of soil moisture show that the bud-gets of the surface water and heat are the important factors.  相似文献   

8.
Trends and scales of observed soil moisture variations in China   总被引:3,自引:0,他引:3  
A new soil moisture dataset from direct gravimetric measurements within the top 50-cm soil layers at 178 soil moisture stations in China covering the period 1981-1998 are used to study the long-term and seasonal trends of soil moisture variations, as well as estimate the temporal and spatial scales of soil moisture for different soil layers. Additional datasets of precipitation and temperature difference between land surface and air (TDSA) are analyzed to gain further insight into the changes of soil moisture. There are increasing trends for the top 10 cm, but decreasing trends for the top 50 cm of soil layers in most regions. Trends in precipitation appear to dominantly influence trends in soil moisture in both cases. Seasonal variation of soil moisture is mainly controlled by precipitation and evaporation, and in some regions can be affected by snow cover in winter. Timescales of soil moisture variation are roughly 1-3 months and increase with soil depth. Further influences of TDSA and precipitation on soil moisture in surface layers, rather than in deeper layers, cause this phenomenon. Seasonal variations of temporal scales for soil moisture are region-dependent and consistent in both layer depths. Spatial scales of soil moisture range from 200-600 km, with topography also having an affect on these. Spatial scales of soil moisture in plains are larger than in mountainous areas. In the former, the spatial scale of soil moisture follows the spatial patterns of precipitation and evaporation, whereas in the latter, the spatial scale is controlled by topography.  相似文献   

9.
Soil moisture is an important variable in the fields of hydrology, meteorology, and agriculture, and has been used for numerous applications and forecasts. Accurate soil moisture predictions on both a large scale and local scale for different soil depths are needed. In this study, a soil moisture assimilation and prediction based on the Ensemble Kalman Filter(EnKF) and Simple Biosphere Model(SiB2) have been performed in Meilin watershed, eastern China, to evaluate the initial state values with different assimilation frequencies and precipitation influences on soil moisture predictions. The assimilated results at the end of the assimilation period with different assimilation frequencies were set to be the initial values for the prediction period. The measured precipitation, randomly generated precipitation,and zero precipitation were used to force the land surface model in the prediction period. Ten cases were considered based on the initial value and precipitation. The results indicate that, for the summer prediction period with the deeper water table depth, the assimilation results with different assimilation frequencies influence soil moisture predictions significantly. The higher assimilation frequency gives better soil moisture predictions for a long lead-time. The soil moisture predictions are affected by precipitation within the prediction period. For a short lead-time, the soil moisture predictions are better for the case with precipitation, but for a long lead-time, they are better without precipitation. For the winter prediction period with a lower water table depth, there are better soil moisture predictions for the whole prediction period. Unlike the summer prediction period, the soil moisture predictions of winter prediction period are not significantly influenced by precipitation. Overall, it is shown that soil moisture assimilations improve its predictions.  相似文献   

10.
An empirical formula to compute snow cover fraction in GCMs   总被引:10,自引:0,他引:10  
There exists great uncertainty in parameterizing snow cover fraction in most general circulation models (GCMs) using various empirical formulae, which has great influence on the performance of GCMs. This work reviews the commonly used relationships between region-averaged snow depth (or snow water equivalent) and snow cover extent (or fraction) and suggests a new empirical formula to compute snow cover fraction, which only depends on the domain-averaged snow depth, for GCMs with different horizontal resolution. The new empirical formula is deduced based on the 10-yr (1978-1987) 0.5°× 0.5° weekly snow depth data of the scanning multichannel microwave radiometer (SMMR) driven from the Nimbus-7 Satellite. Its validation to estimate snow cover for various GCM resolutions was tested using the climatology of NOAA satellite-observed snow cover.  相似文献   

11.
Soil erosion is one of the most serious land degradation problems all over the world,causing irreversible land quality reduction.In this paper,we modify the Revised Universal Soil Loss Equation(RUSLE) model by replacing the factors of slope length and gradient with Sediment Transport Index(STI).The Digital Elevation Model,terrain parameters,Normalized Difference Vegetation Index(NDVI),and rainfall data are used as inputs to the model.Along with the application of remote sensing techniques and ground survey measurements,erosion susceptibility maps are produced.The revised models are then used to obtain the optimal estimate of soil erosion susceptibility at Alianello of southern Italy,which is prone to soil erosion.The soil loss estimated from the modified RUSLE model shows a large spatial variance,ranging from 10 to as much as 7000 ton ha 1 yr 1.The high erosion susceptible area constitutes about 46.8% of the total erosion area,and when classified by land cover type,33% is "mixed bare with shrubs and grass",followed by 5.29% of "mixture of shrubs and trees",with "shrubs" having the lowest percentage of 0.06%.In terms of slope types,very steep slope accounts for a total of 40.90% and belongs to high susceptibility,whereas flat slope accounts for only 0.12%,indicating that flat topography has little effect on the erosion hazard.As far as the geomorphologic types are concerned,the type of "moderate steep-steep slopes with moderate to severe erosion" is most favorable to high soil erosion,which comprises about 9.34%.Finally,we validate the soil erosion map from the adapted RUSLE model against the visual interpretation map,and find a similarity degree of 71.9%,reflecting the efficiency of the adapted RUSLE model in mapping the soil erosion in this study area.  相似文献   

12.
A land-process scheme has been incorporated in a vertical one-dimensional time-dependent atmospheric modeland numerical experiments have been performed with the coupled model to examine influences of soil wetness and vege-tation on climate changes associated to thermal forcing.It is showed that response of land-surface temperature to thethermal forcing becomes small with increase of soil water content and vegetation cover.Furthermore,the response ismore obvious in arid climate region than in humid one.The result also shows that there exist two patterns of corre-sponding relation between variations in air temperature and humidity on the land surface in response to hydrologic andthermal focing.  相似文献   

13.
A new three-dimensional dynamics and electrification coupled model has been developed forinvestigating the characteristics of microphysics,dynamics and electrification insidethunderstorms.This model is basically modified from a three-dimensional,time-dependent,anddual-parameter cloud model originally established in IAP(Institute of Atmospheric Physics)and atwo-dimensional axisymmetric cloud dynamics and electrification coupled model.Primarymodifications to the model include not only the coupling of electrification with dynamical andmicrophysical processes,but also the lightning discharge process and screening layer effect at thecloud top as well.Apart from including a full treatment of small ions with attachment to sixclasses of hydrometeors,the inductive and non-inductive charging mechanisms are more specificallyconsidered.A case simulation of July 19.1981 CCOPE is performed aiming to validate thepotential capability of the model.Comparison between model results and observations reveals thatthe model has the capacity to reproduce many of the observed characteristics of thunderstorms indynamical,microphysical,and electrical aspects.  相似文献   

14.
A three-dimensional cloud-scale model has been designed.The governing equations of the model arecomposed of two groups of equations:one group includes compressible motion equations,continuity equation,pressure equation and thermodynamic equation,which are of Eulerian type,and the other consists of cloud-precipitation microphysics equations which are of Lagrangian type.Since the degree of influence of sound waveon the air motion is quite different from that on the temperature or hydrometeors,the time splitting procedureis used in solving governing equations.Both unstaggered and staggered meshes have been utilized.Integra-tion schemes adopted are the Eulerian backward difference method for the unstaggered mesh and semi-implicitmethod for staggered mesh.Several experiments of modelling have been conducted and a reasonable three-dimensional image of deep convection is obtained.With this model the horizontal and vertical vortex circula-tions are simulated.Furthermore,the effects of horizontal vortex on the formation and development ofdowndraft within cloud have also been studied.  相似文献   

15.
A simple quasi-geostrophic barotropic vorticity equation model is used as the dynamic frame of themodel in this paper.Considering that there are many random errors in model's initial values of meteorolo-gical data,and that it is not perfectly complete about model's physical processes (for example,take no ac-count of the interaction between atmosphere and underlying surface,radiation,etc.),we add the random for-ced term to the model and use the Monte-Carlo method with random initial values.A statistical-dynamicintegrated model is thus built up,and a numerical forecasting experiment of 500hPa monthly mean height fieldof January 1983 has been carried out.The experiment result proves that the forecasting result of the model,considering random forcing and random initial values at the same time,is better than that by the pure dynamicmodel,the random initial value model and the random forced model.  相似文献   

16.
A numerical model has been developed for simulating land-surface processes and atmosphericboundary layer climate of vegetation and desert in semi-arid region.Dynamically,thermal andhydrological processes take place in the atmospheric boundary layer.Vegetation and surface layerof soil are included in the soil-vegetation-atmosphere coupled system,in which,vegetation isconsidered as a horizontally uniform layer,soil is divided into 13 layers and the horizontaldifferences of variables in the system are neglected.The influence of local boundary layer climateby vegetation cover factor is simulated with the coupled model in the semi-arid region of NorthwestChina (around 38°N,105°E).Results indicate that due to significant differences of water andenergy budgets in vegetation and desert region,the air is colder and wetter over the vegetation andcorrespondingly an obvious local circulation in the lower atmosphere is formed.Simulating results also show that maximum updraft and downdraft occur around thevegetation-desert marginal area,where the dynamical and thermodynamical properties of PBL(Planetary Boundary Layer) are uncontinuous.It is stronger at daytime,weaker and reverse atnighttime.In the simulation,the moisture inversion phenomena are analyzed.Finally.theinfluences of vegetation cover factor exchange on local boundary layer climate are simulated.Thesimulating results bring to light that water may be conserved and improved by developing treeplanting and afforestation,and improving cover factor of vegetation in local ecoenvironment,andthis is an important way of transforming local climate in arid and semi-arid area.Results indicatethat the coupled model can be used to study the soil-vegetation-atmosphere interaction and localboundary layer climate.  相似文献   

17.
A simulation of the annual variation of temperature and moisture in the atmosphere and sublayer of soil in mid-high latitudes has been performed with a one-dimensional atmosphere-land coupled model, in which snowmelt process is included. The computed temperature variations in each latitudinal belt are consistent with the seasonal change of snowextent over continents in the Northern Hemisphere.To analyse the short-term climatic effect of snowfall anomaly, two sets of experiments have carried out by using the above simplified model, i. e. 1) the snowmelt period is earlier than the climatic mean and 2) snowdepth is less than the climatic mean. The results are shown in the present paper. In the first experiment, snow melts earlier, and comparing with the normal annual variation, the absorption of solar radiation increases significantly due to the earlier decrease of albedo. Thus the surface temperature is higher, and latent and sensible heat fluxes are enhanced. This process is characterized by thermal anom  相似文献   

18.
Surface heat and moisture fluxes are important to the evolution of a tropical storm after its landfall. Soil moisture is one of the essential components that influence surface heating and moisture fluxes. In this study, the impact of soil moisture on a pre-landfall numerical simulation of Tropical Storm Bill(2015), which had a much longer lifespan over land, is investigated by using the research version of the NCEP Hurricane Weather Research and Forecasting(HWRF) model. It is found that increased soil moisture with SLAB scheme before storm's landfall tends to produce a weaker storm after landfall and has negative impacts on storm track simulation. Further diagnoses with different land surface schemes and sensitivity experiments indicate that the increase in soil moisture inside the storm corresponds to a strengthened vertical mixing within the storm boundary layer, which is conducive to the decay of storm and has negative impacts on storm evolution. In addition, surface diabatic heating effects over the storm environment are also found to be an important positive contribution to the storm evolution over land, but their impacts are not so substantial as boundary layer vertical mixing inside the storm. The overall results highlight the importance and uncertainty of soil moisture in numerical model simulations of landfalling hurricanes and their further evolution over land.  相似文献   

19.
Based on the basic principles of atmospheric boundary layer and plant canopy micrometeorology, a forest underlying surface land surface physical process model and a two-dimensional atmospheric boundary layer numerical model are developed and numerical simulation experiments of biosphere and physiological processes of vegetation and soil volumetric water content have been done on land surface processes with local climate effect. The numerical simulation results are in good agreement with realistic observations, which can be used to obtain reasonable simulations for diurnal variations of canopy temperature, air temperature in canopy, ground surface temperature, and temporal and spatial distributions of potential temperature and vertical wind velocity as well as relative humidity and turbulence exchange coefficient over non-homogeneous underlying surfaces. It indicates that the model developed can be used to study the interaction between land surface process and atmospheric boundary layer over various underlying surfaces and can be extended to local climate studies. This work will settle a solid foundation for coupling climate models with the biosphere.  相似文献   

20.
Based on the existing cumulus convective parameterization schemes,a mass flux scheme(MFS)for cumulus convective parameterization has been successfully developed by reference to thework of Chen et al.(1996).The MFS is a comprehensive scheme.In MFS,not only theimportance of the large-scale moisture convergence is taken into account,but also it includes thecumulus updrafts and downdrafts,cumulus-induced subsidence in the environmental air.entrainment,detrainment and evaporation.The interaction between the cumulus and theenvironment is described by using a one-dimensional bulk model.At the same time the schemeincludes the penetrative and shallow convections.The MFS has been successfully incorporated into the regional climate model RegCM2developed by NCAR.The new model has been applied to simulate summer monsoon characteristicsand their variations of heavy rainfall process in the Changjiang-Huaihe River Basins for threemonths from May to July 1991.The results show that the new model can successfully simulate thisrainfall prolonged process.By comparising the model outputs of RegCM2.using the Kuo schemeand the MFS.it is found that the MFS is better in simulating the surface temperature,rainfallposition and amount,and rainfall duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号