首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The Daliangshan tectonic zone is a rhombic area to the east of the Anninghe and Zemuhe fault zones in the middle segment of the Xianshuihe-Xiaojiang fault system along the southeast margin of the Qinghai-Xizang (Tibet) Plateau. Since the Cenozoic era, the neotectonic deformation in the Daliangshan tectonic zone has presented not only sinistral slip and reverse faulting along the Daliangshan fault zone, but also proximate SN-trending crust shortening. It is estimated that the average crust shortening in the Daliangshan tectonic zone is 10.9±1.6 km, with a shortening rate of 17.8±2.2% using the method of balanced cross-sections. The crust shortening from folding occurred mainly in the Miocene and the Pliocene periods, lasting no more than 8.6 Ma. Based on this, a crust shortening velocity of 1.3±0.2 mm/a can be estimated. Compared with the left offset along the Daliangshan fault zone, it is recognized that crust shortening by folding plays an important part in transferring crustal deformation southeastward along the Xianshuihe-Xiaojiang fault system.  相似文献   

2.
The Daliangshan fault zone is the eastern branch in the central section of Xianshuihe-Xiaojiang fault system. It has been neglected for a long time, partly because of no destructive earthquake records along this fault zone. On the other hand, it is located on the remote and inaccessible plateau. So far it was excluded as part of the Xianshuihe-Xiaojiang fault system. Based on the interpretation of aerophotographs and field investigations, we document this fault zone in detail, and give an estimation of strike-slip rate about 3 mm/a in Late Quaternary together with age dating data. The results suggest that the Daliangshan fault zone is a newly-generated fault zone resulted from shortcutting in the central section of Xianshuihe-Xiaojiang fault system because of the clockwise rotation of the Southeastern Tibetan Crustal Block, which is bounded by the Xianshuihe-Xiaojiang fault system. Moreover, the shortcutting may make the Daliangshan fault zone replace the Anninghe and Zemuhe fault zones gradually, and finally, the later two fault zones will probably die out with the continuous clockwise rotation.  相似文献   

3.
The Daliangshan sub-block is a boundary region among the Bayan Har block, the Sichuan-Yunnan block and the South China block. It hosts four major fault systems:The southwest to south trending Xianshuihe-Zemuhe Fault zone in the west, the Longmenshan fault zone is the northern boundary, the Zhaotong-Lianfeng fault zone in the south, and the NS-trending Mabian-Yanjin fault zone in the east. This study focused on focal mechanisms and the regional stress field of the Daliangshan sub-block to help understand the earthquake preparation process, tectonic deformation and seismic stress interaction in this area. We collected broadband waveform records from the Sichuan Seismic Network and used multiple 1-D velocity models to determine the focal mechanisms of moderate and large earthquakes(ML ≥ 3.5)in the Daliangshan sub-block by using the CAP method. Results for 276 earthquakes from Jan 2010 to Aug 2016 show that the earthquakes are dominated by strike-slip and trust faulting, very few events have normal faulting and the mixed type. We then derived the regional distribution of the stress field through a damp linear inversion(DRSSI)using the focal mechanisms obtained in this study. Inversion results for the spatial pattern of the stress field in the block suggest that the entire region is predominantly under strike-slip and trust faulting regimes, largely consistent with the focal mechanisms. The direction of maximum compression axes is NW-NWW, and part of the area is slightly rotated, which is consistent with the GPS velocity field. Combining geodynamic background, this work suggests that because the Sichuan-Yunnan block is moving to SE and the Tibetan plateau to SE-E along major strike-slip faults, the stress field of the Daliangshan sub-block and its adjacent regions is controlled jointly by the Bayan Har block, the Sichuan-Yunnan block and the South China block.  相似文献   

4.
The seismogenic fault and the dynamic mechanism of the Ning’er, Yunnan Province MS6.4 earthquake of June 3, 2007 are studied on the basis of the observation data of the surface fissures, sand blow and water eruption, land-slide and collapse associated with the earthquake, incorporating with the data of geologic structures, focal mecha-nism solutions and aftershock distribution for the earthquake area. The observation of the surface fissures reveals that the Banhai segment of the NW-trending Ning’er fault is dominated by right-lateral strike-slip, while the NNE-trending fault is dominated by left-lateral strike-slip. The seismo-geologic hazards are concentrated mainly within a 330°-extending zone of 13.5 km in length and 4 km in width. The major axis of the isoseismal is also oriented in 330° direction, and the major axis of the seismic intensity VIII area is 13.5 km long. The focal mechanism solutions indicate that the NW-trending nodal plane of the Ning’er MS6.4 earthquake is dominated by right-lateral slip, while the NE-trending nodal plane is dominated by left-lateral slip. The preferred distribution orientation of the aftershocks of MS≥2 is 330°, and the focal depths are within the range of 3~12 km, predominantly within 3~10 km. The distribution of the aftershocks is consistent with the distribution zone of the seismo-geologic hazards. All the above-mentioned data indicate that the Banhai segment of the Ning’er fault is the seismogenic fault of this earthquake. Moreover, the driving force of the Ning’er earthquake is discussed in the light of the active block theory. It is believed that the northward pushing of the Indian plate has caused the eastward slipping of the Qinghai-Tibetan Plateau, which has been transformed into the southeastern-southernward squeezing of the southwest Yunnan region. As a result, the NW-trending faults in the vicinity of the Ning’er area are dominated by right-lateral strike-slip, while the NE-trending faults are dominated by left-lateral strike-slip. This tectonic  相似文献   

5.
The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, located on the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone had dislocated gully terrace of the first order, forming fault-scarp in front of the loess mesa. It has been discovered in many places in ground surface and trenches that Holocene deposits were dislocated. The latest activity was the 1303 Hongdong earthquake M=8, the fault appeared as right-lateral strike-slip with normal faulting. During that earthquake, the Taigu fault together with the Mianshan western-side fault on the Lingshi upheaval and the Huoshan pediment fault on the eastern boundary of the Linfen basin was being active, forming a surface rupture belt of 160 km in length. Moreover, the Taigu fault were active in the mid-stage of Holocene and near 7 700 aB.P. From these we learnt that, in Shanxi fault-depression system, the run-through activity of two boundary faults of depression-basins might generate great earthquake with M=8. Foundation item: Chinese Joint Seismological Science Foundation (201017). Contribution No. 2003A004, Institute of Crust Dynamics, China Earthquake Administration.  相似文献   

6.
Tectonically, the large-scale right-lateral strike-slip movement along the Red River fault zone is char-acterized at its late phase with the southeastward extension and deformation of the Northwestern Yunnan normal fault depression on its northern segment, and the dextral shear displacement on its central-southern segment. Research of the relations between stratum deformation and fault movement on the typical fault segments, such as Jianchuan, southeast Midu, Yuanjiang River, Yuanyang, etc. since the Miocene Epoch shows that there are two times dextral faulting dominated by normal shearing occurring along the Red River fault zone since the Miocene Epoch. The fission track dating (abbrevi-ated to FT dating, the same below) is conducted on apatite samples collected from the above fault segments and relating to these movements. Based on the measured single grain’s age and the con-fined track length, we choose the Laslet annealing model to retrieve the thermal history of the samples, and the results show that the fault zone experienced two times obvious shear displacement, one in 5.5 ± 1.5 MaBP and the other in 2.1± 0.8 MaBP. The central-southern segment sees two intensive uplifts of mountain mass in the Yuanjiang River-Yuanyang region at 3.6―3.8 MaBP and 1.6―2.3 MaBP, which correspond to the above-mentioned two dextral normal displacement events since the late Miocene Epoch.  相似文献   

7.
The authors processed the seismic refraction Pg-wave travel time data with finite difference tomography method and revealed velocity structure of the upper crust on active block boundaries and deep features of the active faults in western Sichuan Province. The following are the results of our investigation. The upper crust of Yanyuan basin and the Houlong Mountains consists of the superficial low-velocity layer and the deep uniform high-velocity layer, and between the two layers, there is a distinct, and gently west-dipping structural plane. Between model coordinates 180–240 km, P-wave velocity distribution features steeply inclined strip-like structure with strongly non-uniform high and low velocities alternately. Xichang Mesozoic basin between 240 and 300 km consists of a thick low-velocity upper layer and a high-velocity lower layer, where lateral and vertical velocity variations are very strong and the interface between the two layers fluctuates a lot. The Daliang Mountains to the east of the 300 km coordinate is a non-uniform high-velocity zone, with a superficial velocity of approximately 5 km/s. From 130 to 150 km and from 280 to 310 km, there are extremely distinct deep anomalous high-velocity bodies, which are supposed to be related with Permian magmatic activity. The Yanyuan nappe structure is composed of the superficial low-velocity nappe, the gently west-dipping detachment surface and the deep high-velocity basement, with Jinhe-Qinghe fault zone as the nappe front. Mopanshan fault is a west-dipping low-velocity zone, which extends to the top surface of the basement. Anninghe fault and Zemuhe fault are east-dipping, tabular-like, and low-velocity zones, which extend deep into the basement. At a great depth, Daliangshan fault separates into two segments, which are represented by drastic variation of velocity structures in a narrow strip: the west segment dips westward and the east segment dips eastward, both stretching into the basement. The east margin fault of Xichang Mesozoic basin features a strong velocity gradient zone, dipping southwestward and stretching to the top surface of the basement. The west-dipping, tabular-like, and low-velocity zone at the easternmost segment of the profile is a branch of Mabian fault, but the reliability of the supposition still needs to be confirmed by further study. Anninghe, Zemuhe and Daliangshan faults are large active faults stretching deep into the basement, which dominate strong seismic activities of the area. Supported by the National Basic Research Program of China (Grant No. 2004CB428400)  相似文献   

8.
The M8.0 Wenchuan earthquake occurred on the Longmenshan fault zone. Based on field investigation of the surface rupture and focal mechanism study of the aftershocks, we discuss the geological relationship of the main, secondary and triggered ruptures. The main rupture is about 200km long and can be divided into the south part and the north part. The south part consists of two parallel fault zones characterized by reverse faulting, with several parallel secondary ruptures on the hanging wall of the main fault, and the north part is a single main fault zone characterized by lateral strike-slip and reverse faulting. Compared to a 300km long aftershock distribution, the surface rupture only occupies 200km, and the remaining 100km on the northeast of the main rupture was triggered by aftershocks. Study on the ruptures of this earthquake will be useful for studying the earthquake risk evolution on the Longmenshan fault system.  相似文献   

9.
The Litang fault zone (LFZ) is an important active fault within the northwestern Sichuan sub-block. To-gether with the Garzê-Yushu, Xianshuihe, and An-ninghe fault zones on its northern, eastern and south-eastern sides, the LFZ constitutes the lateral extrusion tectonic system in the southeastern part of the Qing-hai-Tibetan Plateau[1,2] (Fig. 1). According to instru-mental records, historical recordings and field investi- gation, an earthquake (Ms7.3) occurred on its middle to south se…  相似文献   

10.
South China is the most important uranium producer in the country. Much of the Mesozoic-Cenozoic geology of this area was dominated by NNE-trending intracontinental strike-slip faulting that resulted from oblique subduction of the paleo-Pacific plate underneath the eastern China continent. This strike-slip fault system was characterized by transpression in the early-mid Jurassic and by transtension from the latest Jurassic through Cretaceous to early Tertiary. Most uranium ore deposits in South China are strictly fault-hosted and associated with mid-late Mesozoic granitic intrusions and volcanic rocks, which formed under transpression and transtension regimes, respectively. Various data demonstrate that the NNE-trending strike-slip faults have played critical roles in the formation and distribution of hydrothermal uranium deposits. Extensive geochronological studies show that a majority of uranium deposits in South China formed during the time period of 140–40 Ma with peak ages between 87–48 Ma, coinciding well with the time interval of transtension. However, hydrothermal uranium deposits are not uniformly distributed along individual strike-slip fault. The most important ore-hosting segments are pull-apart stepovers, splay structures, extensional strike-slip duplexes, releasing bends and fault intersections. This non-uniform distribution of ore occurrences in individual fault zone reflects localization of hydrothermal fluids within those segments that were highly dilational and thus extremely permeable. The unique geometric patterns and structural styles of strike-slip faults may have facilitated mixing of deeply derived and near-surface fluids, as evidenced by stable isotopic data from many uranium deposits in South China. The identification of fault segments favorable for uranium mineralization in South China is important for understanding the genesis of hydrothermal ore deposits within continental strike-slip faults, and therefore has great implications for exploration strategies.  相似文献   

11.
Re-measured GPS data have recently revealed that a broad NE trending dextral shear zone exists in the eastern Bayan Har block about 200 km northwest of the Longmenshan thrust on the eastern margin of the Qinghai-Tibet Plateau. The strain rate along this shear zone may reach up to 4-6 mm/a. Our interpretation of satellite images and field observations indicate that this dextral shear zone corresponds to a newly generated NE trending Longriba fault zone that has been ignored before. The northeast segment of the Longriba fault zone consists of two subparallel N54°±5°E trending branch faults about 30 km apart, and late Quaternary offset landforms are well developed along the strands of these two branch faults. The northern branch fault, the Longriqu fault, has relatively large reverse component, while the southern branch fault, the Maoergai fault, is a pure right-lateral strike slip fault. According to vector synthesizing principle, the average right-lateral strike slip rate along the Longriba fault zone in the late Quaternary is calculated to be 5.4±2.0 mm/a, the vertical slip rate to be 0.7 mm/a, and the rate of crustal shortening to be 0.55 mm/a. The discovery of the Longriba fault zone may provide a new insight into the tectonics and dynamics of the eastern margin of the Qinghai-Tibet Plateau. Taken the Longriba fault zone as a boundary, the Bayan Har block is divided into two sub-blocks: the Ahba sub-block in the west and the Longmenshan sub-block in the east. The shortening and uplifting of the Longmenshan sub-block as a whole reflects that both the Longmenshan thrust and Longriba fault zone are subordinated to a back propagated nappe tectonic system that was formed during the southeastward motion of the Bayan Har block owing to intense resistance of the South China block. This nappe tectonic system has become a boundary tectonic type of an active block supporting crustal deformation along the eastern margin of the Qinghai-Tibet Plateau from late Cenozoic till now. The Longriba fault zone is just an active fault zone newly-generated in late Quaternary along this tectonic system.  相似文献   

12.
川滇菱形块体主要边界运动模型的GPS数据反演分析   总被引:29,自引:7,他引:29       下载免费PDF全文
利用川滇地区1991-1999年的高精度GPS观测处理结果,采用稳健 - 贝叶斯最小二乘算法与多断裂位错模型,分析研究了川滇菱形块体主要边界运动的定量模型.反演分析表明:川西鲜水河断裂带和安宁河断裂带的左旋走滑运动速率约30mm/a,倾滑运动(逆断层)速率分别约9-11mm/a;滇西红河断裂带、程海断裂带、鹤庆 - 洱源断裂带的走滑运动(分别为右旋、左旋、左旋)速率分别约、11、13mm/a,倾滑运动(正断层)速率分别约16、24、16mm/a;如将其视为弹性应力应变积累,则各断层每年有相当于6级左右的地震能量积累.依据上述反演结果,模拟了区域主要断层运动引起的水平位移、应变速率场图像,显示了边界断裂及其之间的相互作用.  相似文献   

13.
Lijiang-Daju fault, the seismogenic fault of the 1996 Lijiang M=7.0 earthquake, can be divided into Lijiang-Yuhu segment in the south and Yuhu-Daju segment in the north. The two segments show clear difference in geological tectonics, but have the similar dynamic features. Both normal dip-slip and sinistral strike-slip coexist on the fault plane. This kind of movement started at the beginning of the Quaternary (2.4~2.5 Ma B.P.). As to the tectonic types, the detachment fault with low angle was developed in the Early Pleistocene and the normal fault with high angle only after the Mid-Pleistocene (0.8 Ma B.P.). Based on the horizontal displacements of gullies and the vertical variance of planation surfaces cross the Lijiang-Daju fault at east piedmont of Yulong-Haba range, the average horizontal and vertical slip rates are calculated. They are 0.84 mm/a and 0.70 mm/a since the Quaternary and 1.56 mm/a and 1.69 mm/a since the Mid-Pleistocene. The movements of the nearly N-S-trending Lijiang-Daju fault are controlled not only by the regional stress field, but also by the variant movement between the Yulong-Haba range and Lijiang basin. The two kinds of dynamic processes form the characteristics of seismotectonic environment of occurring the 1996 Lijiang earthquake.  相似文献   

14.
This study is devoted to a systematic analysis of the stress state of the eastern boundary area of Sichuan-Yunnan block based on focal mechanisms of 319 earthquakes with magnitudes between M3.0 and M6.9, occurring from January 2009 to May 2018. We firstly determined the mechanism solutions of 234 earthquakes by the CAP method, using the broadband waveforms recorded by Chinese regional permanent networks, and collected 85 centroid moment tensor solutions from the GCMT. Then we investigated the regional stress regime through a damp linear inversion. Our results show that:1)the focal mechanisms of moderate earthquakes are regionally specific with three principal types of focal mechanisms:the strike-slip faulting type, the thrust faulting type and the normal faulting type. The strike-slip faulting type is significant in the eastern boundary area of Sichuan-Yunnan block along the Xianshuihe-Xiaojiang Fault, the Daliangshan Fault, and the Zhaotong-Lianfeng Fault. The thrust faulting type and the combined thrust/strike-slip faulting type are significant along the Mabian-Yanjin Fault, Ebian-Yanfeng Fault and the eastern section of Lianfeng Fault; 2)The most robust feature of the regional stress regime is that, the azimuth of principal compressive stress axis rotates clockwise from NWW to NW along the eastern boundary of Sichuan-Yunnan Block, and the clockwise rotation angle is about 50 degrees. Meanwhile, the angels between the principal compressive axis and the trend of eastern boundary of Sichuan-Yunnan Block remain unchanged, which implies a stable coefficient of fault friction in the eastern boundary fault zone of Sichuan-Yunnan Block. The movement of the upper crust in the southeastern Tibetan plateau is a relatively rigid clockwise rotation. On the whole, the Xianshuihe-Xiaojiang Fault is a small arc on the earth, and its Euler pole axis is at(21°N, 88°E). The Daliangshan Fault is surrounded by the Anninghe-Zemuhe Fault, which formed a closed diamond shape. When the Sichuan-Yunnan block rotates clockwise, the Daliangshan Fault locates in the outer of the arc, while the Anninghe-Zemuhe Fault is in the inward of the arc, and from the mechanical point of view, left-lateral sliding movement is more likely to occur on the Daliangshan Fault. Our results can be the evidence for the study on the "cut-off" function of the Daliangshan Fault based on the stress field background; 3)The regional stress regime of the eastern boundary faults zone of the Sichuan-Yunnan Block is the same as the south section of the Dalianshan Fault, and the focal mechanism results also reveal that the Dalianshan Fault is keeping left-lateral strike-slip. There may be the same tectonic stress field that controls the earthquake activities in the southern section of Daliangshan Fault and Zhaotong-Lianfeng Fault. The regional stress regime of Zhaodong-Lianfeng Fault is also the same with the Sichuan-Yunnan Block, which implies that the control effect of the SE movement of the Sichuan-Yunnan block may extend to Weining.  相似文献   

15.
The deep seismic reflection data on profile HY2 are reprocessed by the method of simultaneous inversion of velocity distribution and interface position. By the travel-time inversion with the data of the diving wave Pg and fault plane reflection wave, we determine the geometric form and velocity of Haiyuan fault zone interior and surrounding rock down to 10 km depth. The measured data show that the amplitudes have strong attenuation in the range of stake number 37–39 km, suggesting the fault zone has considerable width in the crustal interior. The results of this paper indicate that to the north of the fault zone the crystalline basement interface upheaves gradually from southwest to northeast and becomes shallow gradually towards northeast, and that to the south of the fault zone, within the basin between Xihua and Nanhua mountains, the folded basement becomes shallow gradually towards southwest. The obliquity of the fault zone is about 70° above the 3 km depth, about 60° in the range of the 3–10 km depths. From the results of this paper and other various citations, we believe that Haiyuan fault zone is in steep state from the Earth’s surface to the depth of 10 km. Foundation item: Joint Seismological Science Foundation of China (201001) and State Key Basic Research Development and Programming Project (95-13-02-02). Contribution No. RCEG200308, Exploration Geophysical Center, China Earthquake Administration.  相似文献   

16.
On the basis of the textual research on the historical earthquake data and the field investigation of Wudu earth- quake occurred in 186 B.C., we suggest that the earthquake parameters drawn from the present earthquake catalogs are not definite and amendments should be made. The heavily-damaged area of this earthquake should be located between Jugan township of Wudu County and Pingding township of Zhouqu County. Its epicenter should be in the vicinity of Lianghekou in Wudu County with a magnitude of about 7~7 41 and an intensity of about IX~X. The major axis direction of the heavily-damaged area should be in the WNW direction that is approximately consistent with the strike of the middle-east segment of Diebu-Bailongjiang active fault zone, and the origin time should match up to that of the latest paleoearthquake event [before (83±46) B.C.] obtained by the trench investigation. Certain seismic rupture evidences are still preserved on this fault segment. Therefore, we propose on the basis of comprehensive analysis that the causative structure of the M 7~7 4/1 Wudu earthquake in 186 B.C. should be in the middle-east segment of Diebu-Bailongjiang active fault zone.  相似文献   

17.
CharacteristicsoffaultrocksandpaleoearthquakesourcealongtheKoktokayErtaifaultzone,Xinjiang,ChinaLANBINSHI1)(史兰斌)CHUANYON...  相似文献   

18.
丽江-小金河断裂与锦屏山断裂共同控制着青藏高原东南边界,研究该断裂的滑动速率有助于理解青藏高原东南缘区域变形模式。本文通过高分辨率遥感影像解译与野外地质调查,发现该断裂错断了一系列河流阶地与洪积扇,且以左旋走滑为主兼具倾滑分量。通过无人机断错地貌测量与碳同位素断代,获得红星-尖山营断裂段全新世左旋走滑速率为(3.32±0.22)mm/a,垂直滑动速率为(0.35±0.02)mm/a;汝南-南溪断裂段北支全新世左旋走滑速率为(2.37±0.20)mm/a。  相似文献   

19.
滇西南打洛断裂位于青藏高原向SE方向物质挤出的最前端,其构造活动记录了青藏高原东南缘最新构造活动信息。通过卫星影像分析、现场追踪调查、探槽开挖、年代样品测试、断错微地貌高精度测绘等工作,对打洛断裂晚第四纪活动特征进行深入研究。结果表明,打洛断裂是一条全新世活动的左旋走滑断裂,晚第四纪水平滑动速率上限值为(2.5±0.1)mm/a,下限值为(0.8±0.1)mm/a,平均约(1.7±0.9)mm/a。假定断裂滑动速率基本保持恒定,根据沿断裂地质体最大位错约(11.2±0.5)km,估算其走滑活动构造转换时代应为(4.4~14.9)Ma B.P.。断裂最近一次构造活动时间为(360±30)a850±30a B.P.。  相似文献   

20.
Seismo-tectonic areas of historical strong earthquakes with M S≥7 along Xianshuihe-Xiaojiang fault zone are divided, and their individual fault-pattern and tectonic geomorphology are analyzed. Those strong-earthquake areas are located in some special parts of the fault zone, where the major branch-faults of the fault zone form left stepping, parallel, and fork-like patterns. In the strong-earthquake areas structurally complicated basins are developed, such as pull-apart basins in fork-like area, in double stepping area, and in stepping and fork-like areas. Foundation item: Chinese Joint Seismological Science Foundation (9507424). Contribution No. 2001A003, Institute of Crustal Dynamics, China Seismological Bureau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号