首页 | 官方网站   微博 | 高级检索  
     


Structural control on uranium mineralization in South China: Implications for fluid flow in continental strike-slip faults
Authors:Jianwei Li  Meifu Zhou  Xianfu Li  Zhaoren Fu and Zijin Li
Affiliation:1. Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China;Department of Earth Sciences, The University of Queensland, Brisbane, Qld 4072, Australia
2. Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
3. Department of Civil Engineering, Wuhan College of Chemical Technology, Wuhan 430073, China
4. Department of Earth Sciences, The University of Queensland, Brisbane, Qld 4072, Australia
Abstract:South China is the most important uranium producer in the country. Much of the Mesozoic-Cenozoic geology of this area was dominated by NNE-trending intracontinental strike-slip faulting that resulted from oblique subduction of the paleo-Pacific plate underneath the eastern China continent. This strike-slip fault system was characterized by transpression in the early-mid Jurassic and by transtension from the latest Jurassic through Cretaceous to early Tertiary. Most uranium ore deposits in South China are strictly fault-hosted and associated with mid-late Mesozoic granitic intrusions and volcanic rocks, which formed under transpression and transtension regimes, respectively. Various data demonstrate that the NNE-trending strike-slip faults have played critical roles in the formation and distribution of hydrothermal uranium deposits. Extensive geochronological studies show that a majority of uranium deposits in South China formed during the time period of 140–40 Ma with peak ages between 87–48 Ma, coinciding well with the time interval of transtension. However, hydrothermal uranium deposits are not uniformly distributed along individual strike-slip fault. The most important ore-hosting segments are pull-apart stepovers, splay structures, extensional strike-slip duplexes, releasing bends and fault intersections. This non-uniform distribution of ore occurrences in individual fault zone reflects localization of hydrothermal fluids within those segments that were highly dilational and thus extremely permeable. The unique geometric patterns and structural styles of strike-slip faults may have facilitated mixing of deeply derived and near-surface fluids, as evidenced by stable isotopic data from many uranium deposits in South China. The identification of fault segments favorable for uranium mineralization in South China is important for understanding the genesis of hydrothermal ore deposits within continental strike-slip faults, and therefore has great implications for exploration strategies.
Keywords:strike-slip fault  transtension  fluid flow  uranium deposits  South China
本文献已被 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号