首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 645 毫秒
1.
利用地震剖面研究夏垫断裂西南段的活动性   总被引:5,自引:1,他引:4  
地震方法是针对厚覆盖区城市直下型活动断裂的一种不可替代的探测技术,对于不同的探测深度需采用不同的排列长度。为研究夏垫断裂在远离三河-平谷8.0级地震震源区的活动性,我们在该震源区SW方向约30km处开展了中浅层反射地震探测试验,并跨过中浅层地震探测到的夏垫断裂进行了浅层反射地震探测试验。浅层和中浅层地震探测的试验结果表明,在5m道间距的地震剖面上,在200m深度以下夏垫断裂得到了较好的反映,在该深度以上,该断裂反映不明显;在2m道间距的地震剖面上,夏垫断裂错断明显,但剖面上的最浅一组反射波(深度约30m)却没有发生明显错断。由此得出:距1679年三河-平谷8.0级地震震源位置SW方向约30km处,夏垫断裂的活动性减弱  相似文献   

2.
为查明夏垫断裂东北段的空间位置、性质及其活动性,由大厂八百户起向东北方向,经过三河齐心庄至北京马坊镇,以可控震源激发方式,完成高分辨率浅层地震勘探测线7条,长约22 km。各地震反射时间剖面波组特征变化明显,断裂特征清晰,获取了准确的断点定位及断裂发育特征,展现了自八百户经齐心庄至马坊镇延伸约20 km范围内夏垫断裂的空间展布及浅部构造特征。结果表明:研究区内夏垫断裂为倾向SE、视倾角约为69°的正断层,结合以往研究成果分析,夏垫断裂属于全新世活动断裂;同时揭示夏垫断裂东北段明显的分段性,齐心庄以北出现一倾向NW的分支断裂。  相似文献   

3.
采用高分辨率浅层地震勘探技术对夏垫断裂夏垫段进行了探测,获得高质量、高分辨率的地震勘探剖面图。划分出9条断裂构造,通过地震时-深转换剖面对比钻孔地层资料确定出断裂的上断点埋深,从而确定了断裂的活动时代。探测结果表明:夏垫断裂是由四条断裂组成,其中的主断裂至今仍在活动;在断裂的上盘还探测到三条活动时代较新的断裂构造。  相似文献   

4.
为进一步深入研究夏垫断裂的发震构造及活动性,在夏垫断裂震中区开展浅层地震勘探,布设小道距、高密度地震勘探测线,对地震反射剖面进行综合解释。以潘各庄段为中心,向两侧展开布设,共布设浅层地震勘探测线12条,测线总长约18 km。野外数据采集采用中间激发、双边不对称接收、满覆盖次数不少于12次的观测系统。原始资料经过常规处理和精细处理,获得了高质量的反射波叠加时间剖面。地震反射时间剖面揭示的波组变化特征明显,断裂特征清晰,解释夏垫断裂为倾向SE、视倾角约为72°的正断层;同时展现了自小石各庄至南张岱延伸约20 km范围内夏垫断裂的空间展布及浅部构造特征,解释测线范围内夏垫断裂走向约为N40°E。在此基础上,结合微地貌测量和以往研究成果,推测夏垫断裂为全新世活动断裂,其中夏垫断裂中心段伴随次断裂发育和断层绕射波,该特征向两侧减弱,与断裂陡坎的分布和连续的高差变化相对应,同时验证了夏垫镇潘各庄附近为震中的结果。探测结果所揭示的夏垫断裂的空间展布及地层结构特征与地质资料吻合。   相似文献   

5.
夏垫断裂浅部特征高分辨反射地震探测研究   总被引:2,自引:0,他引:2  
在夏垫断裂上采用浅层纵、横波相结合的联合探测方法,获得了多条反映不同深度的高质量叠加时间剖面图,这些图像清晰地显示了夏垫断裂的浅部构造特征和地表以下浅至几米的地层结构和断裂特征信息,使得采用人工地震方法探测地表下10m以内的断裂成为可能。本次探测工作中,还在夏垫断裂的南侧发现了1条倾角较缓、呈铲型向下延伸的断裂,表明夏垫断裂是由2条断裂组成的断裂带。  相似文献   

6.
在地质调查与盆地区浅层人工地震初步勘探基础上,在西秦岭北缘断裂带漳县盆地隐伏段的盆地内布设了3条浅层人工地震详勘测线,用于精确定位该断层的空间展布,判定其浅地表活动特征。在此基础上,用钻孔联合剖面方法对人工地震探测结果进行验证,同时确定了各地震测线处断层上断点的位置和埋深,通过钻孔揭露断层错断地层的特点,认为西秦岭北缘断裂漳县盆地隐伏段错断全新统,指示该断层全新世以来活动性较强。  相似文献   

7.
北京平原区隐伏断裂晚第四纪活动特征的联合剖面研究   总被引:13,自引:0,他引:13  
通过地形地质、化探、浅层物探、钻探和槽探等多手段的联合剖面探测研究,首次查明了夏垫隐伏断裂和南口-孙河隐伏断裂的准确位置及其活动性,发现上述隐伏断裂同时具有缓慢同生断裂运动和间隙性突发位错两种运动型式。夏垫隐伏断裂在距今5000年以来有过两次与7级以上地震相当的突发性断层位错;南口-孙河隐伏断裂在最近的1.2万年以来仅发生一次约相当7级地震的突发性断裂位错。这表明,北京平原区的各个隐伏断裂自晚第四  相似文献   

8.
浅层人工地震勘探是探查城市隐伏活动断层最有效的手段之一,然而受近地表探测盲区和探测分辨率的限制,该方法难以获取活动断层超浅层上断点的准确埋深位置。地质雷达探测方法在一定程度上可弥补浅层人工地震勘探的不足。为探索浅层人工地震勘探和地质雷达探测的联合应用效果,分析其在城市隐伏活动断层探测中的应用潜力,选取河南省鹤壁市汤东断裂西支为研究对象,并在冯屯村和前交卸村分别开展联合探测,获取高信噪比的浅层人工地震反射剖面和地质雷达剖面。浅层人工地震勘探揭示的冯屯村处汤东断裂西支上断点埋深为60~70 m,地质雷达探测揭示的上断点埋深约为2.5 m,结合平均沉积速率推测汤东断裂西支在冯屯村的最新活动时代约为25 ka。浅层人工地震勘探揭示的前交卸村处汤东断裂西支上断点埋深为50~60 m,地质雷达探测揭示出汤东断裂西支在前交卸村处未造成近地表约10 m以内的地层断错。研究结果表明,在城市隐伏活动断层探测中,采用浅层人工地震勘探和地质雷达探测相结合的方法,不但可有效确定活动断层的位置,且可进一步约束活动断层上断点的准确埋深,有利于指导后期地震地质勘探中的探槽和钻孔布设。  相似文献   

9.
浅层人工地震勘探是城市活断层探测工程中的重要部分。浅层地震勘探数据库记录测点位置、测线分布图、断点位置等详细信息。本文以宁夏石嘴山市活动断层探测为例,重点介绍了针对石嘴山市内四条隐伏断裂所布设的33条浅层地震勘探测线数据库建设的数据库模型、技术方法、操作技巧及注意事项,为城市活断层探测中基于 ArcGIS等平台系统建立浅层地震勘探数据库提供借鉴。  相似文献   

10.
太行山山前断裂带中北段晚第四纪活动性研究   总被引:4,自引:2,他引:2  
本文通过浅层地震勘探和钻孔联合剖面探测,对太行山山前断裂中北段内相关断裂的空间位置和晚第四纪活动性进行了探测和研究。综合认为,保定-石家庄断裂和徐水断裂的最新活动时代为晚更新世早期,而徐水南断裂晚更新世以来没有活动。上述断裂的最大潜在地震震级为6.5级。  相似文献   

11.
Pangusi-Xinxiang Fault is a great-scale, deep-incising buried active fault in the southern margin of the Taihang Mountains. In order to find out the location, characteristics, structure and activities of Pangusi-Xinxiang Fault, shallow reflection profiles with six lines crossing the buried faults were carried out. In this paper, based on the high-resolution seismic data acquisition technology and high-precision processing technology, we obtained clear images of underground structures. The results show that Pangusi-Xinxiang Fault is a near EW-trending Quaternary active fault and its structural features are different in different segment. The middle part of the fault behaves as a south-dipping normal fault and controls the north boundary of Jiyuan sag; The eastern part of the fault is a north-dipping normal fault and a dividing line of Wuzhi uplift and Xiuwu sag. The shallow seismic profiles reveal that the up-breakpoint of the Pangusi-Xinxiang Fault is at depth of 60~70m, which offsets the lower strata of upper Pleistocene. We infer that the activity time of this fault is in the lower strata of late Pleistocene. In this study, not only the location and characteristics of Pangusi-Xinxiang Fault are determined, but also the reliable geological and seismological evidences for the fault activity estimation are provided.  相似文献   

12.
The Daxing Fault is an important buried fault in the Beijing sub-plain, which is also the boundary fault of the structural unit between Langgu sub-sag and Daxing sub-uplift. So far, there is a lack of data on the shallow tectonic features of the Daxing Fault, especially for the key structural part of its northern section where it joins with the Xiadian Fault. In this paper, the fine stratigraphic classifications and shallow tectonic features of the northern section in the main Daxing Fault are explored by using three NW-trending shallow seismic reflection profiles. These profiles pass through the Daxing earthquake(M6¾)area in 1057AD and the northern section of the main Daxing Fault. The results show that seven strong reflection layers(T01—T03, TQ and T11—T13)are recognized in the strata of Neogene and Quaternary beneath the investigated area. The largest depth of strong reflection layer(T13)is about 550~850ms, which is interpreted as an important surface of unconformity between Neogene and Paleogene or basement rock. The remaining reflection layers, such as T01 and TQ, are interpreted as internal interfaces in Neogene to Quaternary strata. There are different rupture surfaces and slip as well as obviously different structural features of the Daxing Fault revealed in three shallow seismic reflection profiles. The two profiles(2-7 and 2-8)show obvious rupture surfaces, which are the expression of Daxing Fault in shallow strata. Along the profile(2-6), which is located at the end of the Daxing fault structure, a triangle deformation zone or bending fracture can be identified, implying that the Daxing Fault is manifested as bending deformation instead of rupture surfaces at its end section. This unique structural feature can be explained by a shearing motion at the end of extensional normal fault. Therefore, the Daxing Fault exhibits obviously different tectonic features of deformation or displacement at different structural locations. The attitude and displacement of the fault at the shallow part are also different to some extent. From the southwest section to the northeast section of the fault, the dip angle gradually becomes gentler(80°~60°), the upper breakpoint becomes deeper(160~600m), and the fault displacement in Neogene to Quaternary strata decreases(80~0m). Three shallow seismic reflection profiles also reveal that the Daxing Fault is a normal fault during Neogene to early Quaternary, and the deformation or displacement caused by the activity of the fault reaches the reflection layer T02. This depth is equivalent to the sedimentary strata of late Early-Pleistocene. Therefore, the geometry and morphology of the Daxing Fault also reveal that the early normal fault activity has continued into the Early Pleistocene, but the evidence of activity is not obvious since the late Pleistocene. The earthquakes occurring along the Daxing Fault, such as Daxing earthquake(M6¾)in 1057AD, may not have much relation with this extensional normal fault, but with another new strike-slip fault. A series of focal mechanism solutions of modern earthquakes reveal that the seismic activity is closely related to the strike-slip fault. The Daxing Fault extends also downwards into the lower crust, and may be cut by the steeply dipping new Xiadian Fault on deep seismic reflection profile. The northern section of the Daxing Fault strikes NNE, with a length of about 23km, arranged in a right step pattern with the Xiadian Fault. Transrotational basins have been developed in the junction between the northern Daxing Fault and the southern Xiadian Fault. Such combined tectonic features of the Daxing Fault and Xiadian Fault evolute independently under the extensional structure background and control the development of the Langgu sub-sag and Dachang sub-sag, respectively.  相似文献   

13.
五峰山-西来桥断裂和丹徒-建山断裂是镇江地区2条主要的NW向断裂,可能与镇江多次破坏性地震相关。文中通过浅层地震勘探和钻孔联合剖面探测方法,对五峰山-西来桥断裂和丹徒-建山断裂的展布特征及第四纪活动性进行了系统研究。五峰山-西来桥断裂在浅层地震剖面上倾向NE,倾角约为60°,断距约为5~9m,以正断活动为主;大路镇场地上,该断裂断错的最新地层为中更新统底部,位错量为2m,判断五峰山-西来桥断裂的最新活动时代为中更新世早期。丹徒-建山断裂在浅层地震剖面上倾向SW,倾角约为50°~55°,断距约为2~7m,以正断活动为主;访仙镇场地上,中更新统之上的地层没有被断错的迹象,中更新统底部可能被断层影响,判断丹徒-建山断裂的最新活动时代为早更新世—中更新世早期。  相似文献   

14.
The Tan-Lu Fault Zone(TLFZ), a well-known lithosphere fault zone in eastern China, is a boundary tectonic belt of the secondary block within the North China plate, and its seismic risk has always been a focus problem. Previous studies were primarily conducted on the eastern graben faults of the Yishu segment where there are historical earthquake records, but the faults in western graben have seldom been involved. So, there has been no agreement about the activity of the western graben fault from the previous studies. This paper focuses on the activity of the two buried faults in the western graben along the southern segment of Yishu through combination of shallow seismic reflection profile and composite drilling section exploration. Shallow seismic reflection profile reveals that the Tangwu-Gegou Fault(F4)only affects the top surface of Suqian Formation, therefore, the fault may be an early Quaternary fault. The Yishui-Tangtou Fault(F3)has displaced the upper Pleistocene series in the shallow seismic reflection profile, suggesting that the fault may be a late Pleistocene active fault. Drilling was implemented in Caiji Town and Lingcheng Town along the Yishui-Tangtou Fault(F3)respectively, and the result shows that the latest activity time of Yishui-Tangtou Fault(F3)is between(91.2±4.4)ka and(97.0±4.8)ka, therefore, the fault belongs to late Pleistocene active fault. Combined with the latest research on the activity of other faults along TLFZ, both faults in eastern and western graben were active during the late Pleistocene in the southern segment of the Yishu fault zone, however, only the fault in eastern graben was active in the Holocene. This phenomenon is the tectonic response to the subduction of the Pacific and Philippine Sea Plate and collision between India and Asian Plate. The two late Quaternary active faults in the Yishu segment of TLFZ are deep faults and present different forms on the surface and in near surface according to studies of deep seismic reflection profile, seismic wave function and seismic relocation. Considering the tectonic structure of the southern segment of Yishu fault zone, the relationship between deep and shallow structures, and the impact of 1668 Tancheng earthquake(M=8(1/2)), the seismogenic ability of moderate-strong earthquake along the Yishui-Tangtou Fault(F3)can't be ignored.  相似文献   

15.
郯庐断裂带莱州湾段的构造特征   总被引:5,自引:1,他引:5  
本文利用海上浅层地震勘探剖面分析了郯庐断裂带莱州湾段的上更新统、全新统和活动构造的某些特征。晚更新世末期发生的构造运动使上更新统产生断裂与褶皱,沿郯庐断裂带东主干断裂发育了狭长的背斜构造,在西主干断裂两侧次级横向(东西向)断裂十分发育,这些横向断裂是一些高角度的张性正断层。  相似文献   

16.
Abstract Ground penetrating radar (GPR) and high‐resolution shallow reflection seismic surveying were carried out to investigate the subsurface geology in and around the Uemachi Fault zone in the Yamato River area, Osaka, Japan. Shallow drilling in the area showed a major displacement event during the middle Pleistocene. The main Uemachi Fault plane could be clearly imaged on the seismic section, except for the most shallow 200 m. Several shallow normal fault planes with less displacement could be detected on both sides of the fault plane. GPR profiles confirmed the presence of several shallow normal faults within the area near the fault zone. These shallow faults could be followed in all of the GPR profiles crossing the fault zone. The integration of seismic section, GPR profiles and drilling data led to a conceptual model that explains the evolution of the Uemachi Fault system. The proposed model suggests the occurrence of several cycles of small vertical displacement along the deep part of the fault plane caused by the regional east–west compressional stress. The ductile nature of the shallow sedimentary cover and the absence of confining pressure in the shallow part allow for a considerable amount of plastic bending before failing in the shallow sedimentary layers. This bending generates stretching force within the shallow sedimentary cover, which in time, along with gravitational force, gives rise to the formation of the swarm of normal faults within the shallow layers near the fault zone. Some of the detected faults extend to a depth of less than 3 m below the ground surface, suggesting that the last tectonic activity along the fault plane may have occurred recently.  相似文献   

17.
The Gudian Fault in the southwest of Songyuan is an important fault in the central depression of the Songliao Basin. It was recognized from the petroleum exploration data. Based on the data, we conducted shallow seismic exploration, drilling exploration, age determination(OSL) and topography measurement. The fault features and its motion characteristics are analyzed with the results of shallow seismic exploration. With stratigraphic correlation and optical stimulated luminescence dating, the latest active age of the fault is determined. The surface relief of the region to the southeast of the drilling site is relatively larger than surrounding places. An 800m long section across the fault was measured by GPSRTK, and the deformation amount across the zone was calculated. Four conclusions are drawn in this paper:(1) The Gudian Fault is arcuate in shape and shows a property of inverse fault with a length of about 66km in the reflection interface T1(bottom of the upper Cretaceous Nenjiang Group). (2) The middle part of the fault rupture is wider than the ends, narrowing or dying out outwards. According to this feature and the rupture of the bottom of the fourth segment of the upper Cretaceous Nenjiang Group, the fault can be divided into three segments, e.g. Daliba Village-Gaizijing-Guyang segment, Guyang-Shenjingzi-Julongshan Village segment and Julongshan Village-Caiyuanzi segment. (3) The yellow silt layer at the base of the upper Pleistocene series ((33.66±3.27) ka BP~50ka BP) is offset by the Gudian Fault, while the upper tawny silt layer is not influenced by the fault. Thus, the fault belongs to late Pleistocene active fault. (4) The amount of geomorphic deformation around Shenjingzi is 9m. The depth of the bottom of the upper Pleistocene series is 11m and the Huangshan Group of the mid Pleistocene series exposes to the southeast of the deformation zone. Therefore, the throw of the bottom of the upper Pleistocene series is about 20m at the sides of the deformation zone. In addition, the Qianguo M6(3/4) earthquake occurred in Songyuan area in 1119 AD. Though some studies have been done, arguments still exist on the seismogenic structure of the Qianguo M6(3/4) earthquake. Combined with others studies, Gudian Fault is considered as the seismogenic structure of the Qianguo M6(3/4) earthquake.  相似文献   

18.
The location of the buried faults, the fault broken layers and the depth of breakpoints in the Tangshan-Hejian-Cixian seismotectonic zone are not clear. We implemented 4 shallow seismic exploration profiles on the Daming Fault, Cangxi Fault, and Dachengdong Fault. Line DZ1 is located on the Daming Fault in the southeast of Daming County. Five breakpoints were dectectd, which are all normal faults, with depths of 95~125m and displacements about 6~12m, offsetting late Pleistocene but not the Holocene. Line DZ2 is located in the east of Xianxian County to dectect the Cangxi Fault. Three breakpoints were detected, all are normal faults, with depths of 170~190m and displacements about 7~10m. The upper breakpoints of the three faults cut the middle Pleistocene. The lines DZ3 and DZ4 are located in the west of Litan Town, Dacheng County. Four breakpoints were detected, with the upper breakpoint depth of 120~130m and displacements about 5~15m. They are all normal faults, and the upper breakpoints of the faults cut the Pleistocene strata.
The result of the exploration of Cixian-Daming Fault is not consistent with the buried depth 1 200m proposed by XU Hua-ming. It is proved that the activity of the fault is also consistent with the overall activity of the Cixian-Daming Fault, which is an active fault since late Pleistocene.
The Dachengdong Fault and Cangxi Fault offset the middle Pleistocene strata. Although the late Pleistocene active faults are generally defined as active faults in the practice of active tectonics research in China, strong earthquakes in eastern China have shorter recurrence period, and earthquakes of magnitude 6 or so may also occur in some middle Pleistocene active faults.
During the compilation of GB18306-2015 “Seismic ground motion parameter zonation map of China”, there were no late Pleistocene active faults in the M6~6.5 potential source areas in eastern China. Therefore, we believe that the Dachengdong and Cangxi faults still have the ability to generate earthquake of magnitude 6 or so, and the faults have some similarities with the seismogenic structures of Xingtai earthquake swarm. Under the action of the latest tectonic stress field, the “deep faults” tearing ruptured successively and expanded upwards, resulting in stress migration and loading between two neighbouring en-echolon concealed faults, so, the Dachengdong and Cangxi faults are the product of this three-dimensional rupture process. The Dachengdong Fault is a “newly-generated” fault resulting from the tearing rupturing and upward expanding of the pre-existing concealed “deept faults” in the middle and lower curst.  相似文献   

19.
上海两条隐伏第四纪断裂的研究   总被引:3,自引:0,他引:3  
以浅层地震勘探为主要方法 ,研究了上海两条主要断裂 (太仓 -奉贤断裂和枫泾 -川沙断裂 )的第四纪活动性。结果表明 ,断裂的最新活动一般在早更新世 -中更新世 ,个别区段的活动可延续至晚更新世  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号