首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于2009—2014年渭河盆地及邻区GPS资料,利用Shen提出的连续形变场与应变场计算方法,获得渭河盆地及邻区的水平形变场及应变率场,结合构造地质、地震目录等资料对渭河盆地及邻区的现今地壳形变及构造特征进行研究,并得到如下结论:(1)鄂尔多斯地块南缘西段和东段GPS形变场变化差异明显,六盘山—陇县—宝鸡断裂带形变场以挤压变形为主,渭河盆地中部西安—咸阳地区的形变场呈现EW向挤压、SN向拉张特征;(2)主应变率、剪应变率、面应变率变化明显的区域位于鄂尔多斯地块西南缘的六盘山—陇县—宝鸡断裂带、渭河盆地中部的长安—临潼断裂与渭南塬前断裂以及韩城断裂与双泉—临猗断裂附近;(3)未来需要警惕六盘山—陇县—宝鸡断裂带、长安—临潼断裂与渭南塬前断裂以及韩城断裂与双泉—临猗断裂附近的地震危险性。  相似文献   

2.
On the basis of the GPS data obtained from repeated measurements carried out in 2004 and 2007,the horizontal principal strain of the Chinese mainland is calculated,which shows that the direction of principal compressive strain axis of each subplate is basically consistent with the P-axis of focal mechanism solution and the principal compressive stress axis acquired by geological method.It indicates that the crustal tectonic stress field is relatively stable in regions in a long time.The principal compressive stress axes of Qinghai-Tibet and Xinjiang subplates in the western part of Chinese mainland direct to NS and NNE-SSW,which are controlled by the force from the col-lision of the Eurasia Plate and India Plate.The principal compressive strain axes of Heilongjiang and North China subplates in the eastern part direct to ENE-WSW,which shows that they are subject to the force from the collision and underthrust of the Eurasia Plate to the North America and Pacific plates.At the same time,they are also af-fected by the lateral force from Qinghai-Tibet and Xinjiang subplates.The principal compressive strain axis of South China plate is WNW-ESE,which reflects that it is affected by the force from the collision of Philippine Sea Plate and Eurasia Plate and it is also subject to the lateral force from Qinghai-Tibet subplate.It is apparent from the comparison between the principal compressive strain axes in the periods of 2004~2007 and 2001~2004 that the acting directions of principal compressive stress of subplates in both periods are basically consistent.However,there is certain difference between their directional concentrations of principal compressive stress axes.The sur-face strain rates of different tectonic units in both periods indicate that the events predominating by compressive variation decrease,while the events predominating by tensile change increase.  相似文献   

3.
Movement and strain conditions of active blocks in the Chinese mainland   总被引:2,自引:0,他引:2  
The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velocities at 1598 GPS stations obtained from GPS measurements carried out in the past years in the Chinese mainland and the surrounding areas. The movement and strain conditions of the blocks are analyzed. The active blocks in the Chinese mainland have a consistent E-trending movement component, but its N and S components are not consistent. The blocks in the western part have a consistent N-trending movement and the blocks in the eastern part have a consistent S-trending movement. In the area to the east of 90°E, that is the area from Himalayas block towards NE, the movement direction of the blocks rotates clockwisely and the movement rates of the blocks are different. Generally, the movement rate is large in the west and south and small in the east and north with a difference of 3 to 4 times between the rates in the west and east. The distributions of principal compressive strain directions of the blocks are also different. The principal strain of the blocks located to the west of 90oE is basically in the SN direction, the principal compressive strain of the blocks in the northeastern part of Qingzang plateau is roughly in the NE direction and the direction of principal compressive strain of the blocks in the southeastern part of Qingzang plateau rounds clockwisely the east end of Himalayas structure. In addition, the principal strain and shear strain rates of the blocks are also different. The Himalayas and Tianshan blocks have the largest principal compressive strain and the maximum shear strain rate. Then, Lhasa, Qiangtang, Southwest Yunnan (SW Yunnan), Qilian and Sichuan-Yunan (Chuan-Dian) blocks followed. The strain rate of the blocks in the eastern part is smaller. The estimation based on the stain condition indicates that Himalayas block is still the area with the most intensive tectonic activity and it shortens in the NS direction at the rate of 15.2±1.5 mm/a. Tianshan block ranks the second and it shortens in the NS direction at the rate of 10.1±0.9 mm/a. At present, the two blocks are still uprising. It can be seen from superficial strain that the Chinese mainland is predominated by superficial expansion. Almost the total area in the eastern part of the Chinese mainland is expanded, while in the western part, the superficial compression and expansion are alternatively distributed from the south to the north. In the Chinese mainland, most EW-trending or proximate EW-trending faults have the left-lateral or left-lateral strike-slip relative movements along both sides, and most NS-trending faults have the right-lateral or right-lateral strike-slip relative movements along both sides. According to the data from GPS measurements the left-lateral strike-slip rate is 4.8±1.3 mm/a in the central part of Altun fault and 9.8±2.2 mm/a on Xianshuihe fault. The movement of the fault along the block boundary has provided the condition for block movement, so the movements of the block and its boundary are consistent, but the movement levels of the blocks are different. The statistic results indicate that the relative movement between most blocks is quite significant, which proves that active blocks exist. Himalayas, Tianshan, Qiangtang and SW Yunnan blocks have the most intensive movement; China-Mongolia, China-Korea (China-Korea), Alxa and South China blocks are rather stable. The mutual action of India, Pacific and Philippine Sea plates versus Eurasia plate is the principal driving force to the block movement in the Chinese mainland. Under the NNE-trending intensive press from India plate, the crustal matter of Qingzang plateau moves to the NNE and NE directions, then is hindered by the blocks located in the northern, northeastern and eastern parts. The crustal matter moves towards the Indian Ocean by the southeastern part of the plateau.  相似文献   

4.
Introduction In the last 20 years, with observation technique development in space monitoring to Earth, a large progress has been made in monitoring crustal movement. This makes it possible for us to study crustal movement and the present geodynamic. Continuous GPS observation conducted in Chinese mainland and its neighboring region provides us for studying the present strain field of crustal micro-behavior tectonic. Crustal micro-behavior tectonic means that we can study the dif-ference bet…  相似文献   

5.
The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velocities at 1598 GPS stations obtained from GPS measurements carried out in the past years in the Chinese mainland and the surrounding areas. The movement and strain conditions of the blocks are analyzed. The active blocks in the Chinese mainland have a consistent E-trending movement component, but its N and S components are not consistent. The blocks in the western part have a consistent N-trending movement and the blocks in the eastern part have a consistent S-trending movement. In the area to the east of 90°E, that is the area from Himalayas block towards NE, the movement direction of the blocks rotates clockwisely and the movement rates of the blocks are different. Generally, the movement rate is large in the west and south and small in the east and north with a difference of 3 to 4 times between the rates in the west and east. The distributions of principal compressive strain directions of the blocks are also different. The principal strain of the blocks located to the west of 90°E is basically in the SN direction, the principal compressive strain of the blocks in the northeastern part of Qingzang plateau is roughly in the NE direction and the direction of principal compressive strain of the blocks in the southeastern part of Qingzang plateau rounds clockwisely the east end of Himalayas structure. In addition, the principal strain and shear strain rates of the blocks are also different. The Himalayas and Tianshan blocks have the largest principal compressive strain and the maximum shear strain rate. Then, Lhasa, Qiangtang, Southwest Yunnan (SW Yunnan), Qilian and Sichuan-Yunan (Chuan-Dian) blocks followed. The strain rate of the blocks in the eastern part is smaller. The estimation based on the stain condition indicates that Himalayas block is still the area with the most intensive tectonic activity and it shortens in the NS direction at the rate of 15.2 ± 1.5 mm/a. Tianshan block ranks the second and it shortens in the NS direction at the rate of 10.1 ± 0.9 mm/a. At present, the two blocks are still uprising. It can be seen from superficial strain that the Chinese mainland is predominated by superficial expansion. Almost the total area in the eastern part of the Chinese mainland is expanded, while in the western part, the superficial compression and expansion are alternatively distributed from the south to the north. In the Chinese mainland, most EW-trending or proximate EW-trending faults have the left-lateral or left-lateral strike-slip relative movements along both sides, and most NS-trending faults have the right-lateral or right-lateral strike-slip relative movements along both sides. According to the data from GPS measurements the left-lateral strike-slip rate is 4.8 ± 1.3 mm/a in the central part of Altun fault and 9.8 ± 2.2 mm/a on Xianshuihe fault. The movement of the fault along the block boundary has provided the condition for block movement, so the movements of the block and its boundary are consistent, but the movement levels of the blocks are different. The statistic results indicate that the relative movement between most blocks is quite significant, which proves that active blocks exist. Himalayas, Tianshan, Qiangtang and SW Yunnan blocks have the most intensive movement; China-Mongolia, China-Korea (China-Korea), Alxa and South China blocks are rather stable. The mutual action of India, Pacific and Philippine Sea plates versus Eurasia plate is the principal driving force to the block movement in the Chinese mainland. Under the NNE-trending intensive press from India plate, the crustal matter of Qingzang plateau moves to the NNE and NE directions, then is hindered by the blocks located in the northern, northeastern and eastern parts. The crustal matter moves towards the Indian Ocean by the southeastern part of the plateau.  相似文献   

6.
Introduction The northeast margin of Qinghai-Xizang block has become the place with close attentions from geo-specialists at home and abroad for its significant tectonic movement and intensive seismicity. Quite a number of achievements have been obtained from the studies on geological structures and strong earthquake activities (DING, LU, 1989, 1991; GUO, et al, 1992, 2000; GUO, XIANG, 1993; HOU, et al, 1999; Tapponnier, et al, 1990; Gaudemer, et al, 1995). In the Development Program…  相似文献   

7.
In the paper, the current strain field and stress field in Chinese continent have been discussedbased on the processed data from two GPS campaigns of national GPS network carried out inthe years of 1994 and 1996. With a principal compressional strain direction of NNE, thewestern and castern parts of Qinghai-Xizang subplate are dominated by extensional straiu andthe central Part by compressional strain. Along the southwestern segment of southeastern partof Qinghai-Xizang subplate, i. e. Yunnan area, the princiPal compressional strain direction isNW and the compressional strain is equivalent to the extensional strain in magnitude. Theprincipal compressional strain of Xinjiang subplate is mainly NNE and NE with a difference inthe strain magnitude. The principal compressional strain in North China subplate is quite effective in NE and nearly EW directions with differences along some segments. However, thecompressional strain is corresponding to the extensional strain in magnitude in most areas. Theprincipal  相似文献   

8.
根据1999~2009年网络工程GPS观测资料计算得到的应变率参数,研究了中国大陆地壳的应变应力场及其地壳现今的水平活动特征。结果表明,中国大陆地壳西部青藏亚板块的压应力主方向围绕藏南和阿萨姆构造结向北、东、南依次辐射撒开。新疆亚板块自西向东由近SN向变为NE向。中国大陆东部地壳的压应力主方向自北向南由NEE变为近EW向,再变为SEE向。中国大陆主压应力作用强度西部显著大于东部。中国大陆地壳西部强于东部,南部强于北部,现今西部地壳以挤压、走滑为主,东部地壳既有挤压、走滑,也有拉张。  相似文献   

9.
中国大陆现今水平形变动态特征   总被引:2,自引:0,他引:2       下载免费PDF全文
2001~2004大陆水平应变场大致沿玉树、阿尼玛沁、鲜水河、小江等断裂带形成一条由东西走向转为南北走向的应变高值带.2004~2007高值带向局部收缩,并维持前期高值.新疆于田MS7.3、四川汶川MS8.0分别位于该高值带的东段、西段剪应变梯度带上,具备大尺度形变背景.分析认为昆仑山MS8.1对青藏高原内部块体、川滇块体的相对运动产生重大影响,导致震中两侧一系列断裂带附近区域水平差异运动处于较高水平,印尼MS8.7地震则有利于上述区域应变能进一步积累.此外,2001~2004、2004~2007应变分布特征总体从无序趋向有序,体现构造应力场经历调整与再积累过程.现阶段太平洋板块、菲律宾板块俯冲作用可能有所增强.  相似文献   

10.
The authors firstly evaluate the strain accumulation rate of the Xianshuihe fault zone based on earth- quake activity. We calculated the stress and seismic moment accumulation rate for each subsection of the Xianshuihe fault zone based on the distribution of geological slip rate and GPS survey results. According to the results, we get the recurrence intervals of characterized earthquakes on each sub- section respectively. A three-dimensional finite element model for western Sichuan is constructed to discuss the earthquakes triggering among major earthquakes (M>6.7) that occurred along the Xianshuihe fault zone since 1893. The calculated Coulomb failure stress changes (ΔCFS) show that 5 of the 6 earthquakes with Ms>6.7 were triggered by positive ΔCFS. The interactions between major earthquakes not only influence recurrence intervals of characterized earthquakes on each subsection, but also change recurrence behavior of major earthquakes along the whole fault zone.  相似文献   

11.
Through numerical simulation for GPS data, aseism/c negative dislocation model for crustal horizontal movement during 1999-2001 in the northeast margin of Qinghai-Xizang block is presented, combined with the spatial distri-bution of apparent strain field in this area, the characteristics of motion and deformation of active blocks and their boundary faults, together with the place and intensity of strain accumulation are analyzed. It is shown that: a) 9 active blocks appeared totally clockwise motion from eastward by north to eastward by south. Obvious sinistral strike-slip and NE-NEE relative compressive motion between the blocks separated by Qilianshan-Haiyuan fault zone was discovered; b) 20 fault segments (most of them showed compression) locked the relative motion between blocks to varying degrees, among the total, the mid-east segment of Qilianshan fault (containing the place where it meets Riyueshan-Lajishan fault) and the place where it meets Haiyuan fault and Zhuanglanghe fault, more favored accumulation of strain. Moreover, the region where Riyueshan-Lajishan fault meets north boundary of Qaidam block may have strain accumulation to some degree, c) Obtained magnitude of block velocities and locking of their boundaries were less than relevant results for observation in the period of 1993-1999.  相似文献   

12.
对中国大陆地壳水平变形的初步探索   总被引:13,自引:0,他引:13  
郭良迁 《中国地震》2000,16(2):126-134
根据全国GPS网1994和1996年两期观测资料的处理结果,讨论了中国大陆地区现阶段应变场和应力场。青藏亚板块的西部和东部张应变起主导作用,中部压应变占优势,主压应变方向为北北东向;青藏亚板块东南部东南段云南地区的主压应变方向为北西向,压应变和张应变量级相当。新疆亚板块的主压应役北北东向至北东向为主,应变量存在差别。华北亚板块的主压应变方向是北东至近东西向为主导,局部地段存在差别,大部分地区压应变  相似文献   

13.
利用2009-2011年三期GNSS观测资料,获得新源—和静6.6级地震前后震中附近区域水平运动速率、主应变率、面膨胀率及最大剪应变率,分析得出:(1)研究区整体呈挤压缩短趋势,南部区域运动速率总体高于北部,而中部区域运动速率高于东西两侧,这与区域构造特点有关。新源—和静MS6.6地震之后,研究区西北部区域的应力场能量得到较大的吸收和释放。(2)从研究区应变分析中可以看出,沿断层出现的主应变率正负交替区域与地震的发生有一定关系。从面膨胀等值线图可以看出,两个面收缩区之间区域是地震发生的重要区域。剪应变区域变化可以反映出地震的破裂方向。  相似文献   

14.
The bacterial community in deep subseafloor sediments at a depth of 230 cm from the western Pacific “warm pool” is studied by construction of 16S rDNA clone library and PCR-RFLP (Restriction Fragment Length Polymorphism) analysis. The results indicate that the bacterial community in these sediments is mainly composed of five groups: α-Proteobacteria, β-Proteobacteria, CFB group (Cytophaga / Flexibacteria / Bacteroides), Acidobacteria and gram positive bacteria, with a few genera detected in each group. The most abundant bacteria group is α-Proteobacteria, and the next is β-Proteobacteria. The dominant species in α-and β-Proteobacteria are Sphingomonas paucimobilis and Pseudomonas alcaligenes respectively. The CFB group is simply composed of members belonging to Flavobacterium. The gram positive bacteria are rich, and mainly consists of the genus Geobacillus. The analysis of bacterial community indicates that organic matter is still abundant in the subseafloor sediments at the depth of 230 cm in the western Pacific “warm pool”. These bacteria in this deep biosphere may play an important role in the nitrogen cycle of deep sea sediments at “warm pool”. Supported by the National Key Basic Research Support Foundation of China (Grant No. G2000078500) and China Ocean Mineral Resources R&D Association Project (Grant No. DY105-4-2-4)  相似文献   

15.
利用青藏高原东缘1999—2013年间多期GPS水平速率观测数据,基于多面函数拟合,计算球面坐标系下区域不同时期的面应变和最大剪应变,分析地应变的时空演化特征,结合不同时期发生的中强以上地震(MS6.0),研究期间大震分布与地应变时空演化特征的关系,主要结论如下:(1)青藏高原东缘面应变分布与地块有一定的对应关系,面应变的差异会在块体边界和内部形成不同的断层闭锁形式,与地震发生位置和震源机制有一定的关联;(2)区域最大剪应变的高值区对应于构造活动性较强的断裂带,这些断裂带鲜有地震发生;低值区对应于活动性较弱的断裂带,在区域地壳运动剧烈的背景下,在这些活动性相对较弱的断层上易形成应变能积累,因而会发生地震。区域绝大多数地震都发生在最大剪应变的低值区。  相似文献   

16.
中国大陆地壳的应变应力场研究   总被引:5,自引:0,他引:5  
根据全国GPS网1994年和1996年两期测量结果,研究了中国大陆地壳现阶段的水平形变应力场。结果显示,西部青藏块体与新疆块体主压应力场为近南北至北 北东向,而南北地震带以东、长江以及北地区为北东东至近东西向,华南块体上为北 北西至北西向,与滑线场理论模型基本吻合。反映出中国大陆地壳变形的压应力主要来自印度板块与欧亚板块的俯冲碰撞。而太平洋板块与菲律宾板块对欧亚板块的作用力以及地幔向上的作用力总体  相似文献   

17.
This work deals with the preliminary relationship between strain path and strain partitioning pattern in a sinistral transpressional zone,Lancangjiang shear zone,located to the southeast of Tibet.Various ductile rocks provide an opportunity to investigate quantitative finite strain(Rs),kinematic vorticity values(Wm),and proportions of simple and pure shear components.The mean kinematic vorticity values(Wm) were evaluated based on three methods,such as Rs-θ,prophyroclast hyperbolic distribution method(PHD),a...  相似文献   

18.
Relationships between the North Pacific Oscillation (NPO) and the typhoon as well as hurricane fre-quencies are documented. The correlation between NPO index in June-July-August-September and the annual typhoon number in the western North Pacific is 0.37 for the period of 1949―1998. The NPO is correlated with the annual hurricane number in the tropical Atlantic at -0.28 for the same period. The variability of NPO is found to be concurrent with the changes of the magnitude of vertical zonal wind shear, sea-level pressure patterns, as well as the sea surface temperature, which are physically asso- ciated with the typhoons and hurricanes genesis. The NPO associated atmospheric circulation vari- ability is analyzed to explain how NPO is linked with variability of the tropical atmospheric circulation in the western Pacific and the tropical Atlantic, via the atmospheric teleconnection.  相似文献   

19.
东亚大陆大地震的活动带走向、活动方式、震源主压应力方向、总迁移方向,沿纬度的分布和发震频度随时间的变化,均与地球自转速率变化有成因联系。本文从地球自转加速、减速、匀速的变化趋势进行这方面的观测资料分析,证明地球速率变化是东亚大陆地震的基本动力来源  相似文献   

20.
The time-space distribution characteristics of fault deformation anomaly in the near-source region and its outlying zone in the seismogenic process of the Jingtai M s=5.9 earthquake occurred on June 6, 2000 in Gansu Province is studied preliminarily. The distribution scope of fault deformation anomaly before the earthquake is wide, the anomaly shape is complicated and the pattern anomalous zone of fault deformation (strain) information index is obvious. The shape and amplitude of fault deformation anomaly in different regions differ significantly, which is closely related with the tectonic location of anomaly. The fault deformation anomaly of α, β, and γ phases along the western segment of Haiyuan fault zone shows the process from the quasi-linearity to non-linearity of fault movement in the near-source region, matches the high-value anomalous area of fault deformation (strain) information index, and reflects the high strain accumulation in the seismogenic region. However, the anomaly of abrupt jump and cusp with a large amplitude occurred in the areas far from the earthquake, such as Liupanshan fault zone which is the tectonic convergent section does not reflect the strain accumulation of its location, maybe it is a sign that the regional tectonic stress field is strengthened in the seismogenic process. Based on the above-mentioned facts and combined with the preliminary summary of experiences and lessons in the intermediate and short-term prediction of the Jingtai M s=5.9 earthquake, we study and explore the application of fault deformation anomaly to earthquake judgment. Foundation item: National Key Basic Research Development Program (G1998040703 and G1998040705), and State Scientific and Technological Project of the “Ninth Five-Year Plan” (96-913-09-01-02-03 and 96-913-09-02-02-03), China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号