首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
中国大陆现今应变场动态   总被引:4,自引:0,他引:4       下载免费PDF全文
根据2004年和2007年GPS复测资料,计算出中国大陆的水平主应变数据,显示出各亚板块的主压应变轴方向与震源机制解的P轴和用地质方法得到的主压应力轴基本一致,表明在区域上和长时期中,地壳的构造应力场是相对稳定的.中国大陆西部的青藏亚板块和新疆亚板块的主压应力轴,为南北向及北北东-南南西向,受欧亚板块和印度板块相互碰撞而产生的作用力的控制;东部的黑龙江亚板块和华北亚板块的主压应变轴,为北东东-南西西向,显示出受欧亚板块与北美板块、太平洋板块碰撞俯冲产生的作用力影响,同时也受青藏亚板块和新疆亚板块侧向作用力的影响;华南亚板块的主压应变轴,为北西西-南东东向,反映出受菲律滨海板块与欧亚板块碰撞产生的作用力影响,同时也受青藏亚板块侧向作用力的影响.通过比较2004-2007年与2001-2004年的主压应变轴方向,反映出两个时间段各亚板块的主压应力作用方向基本一致,只是主应力轴方向集中程度有一定差别.前后两个时间段不同单元的面应变率显示,压性变化为主的数量减少,张性变化为主的数量有所增多.   相似文献   

2.
根据1999~2009年网络工程GPS观测资料计算得到的应变率参数,研究了中国大陆地壳的应变应力场及其地壳现今的水平活动特征。结果表明,中国大陆地壳西部青藏亚板块的压应力主方向围绕藏南和阿萨姆构造结向北、东、南依次辐射撒开。新疆亚板块自西向东由近SN向变为NE向。中国大陆东部地壳的压应力主方向自北向南由NEE变为近EW向,再变为SEE向。中国大陆主压应力作用强度西部显著大于东部。中国大陆地壳西部强于东部,南部强于北部,现今西部地壳以挤压、走滑为主,东部地壳既有挤压、走滑,也有拉张。  相似文献   

3.
中国大陆地壳的应变应力场研究   总被引:5,自引:0,他引:5  
根据全国GPS网1994年和1996年两期测量结果,研究了中国大陆地壳现阶段的水平形变应力场。结果显示,西部青藏块体与新疆块体主压应力场为近南北至北 北东向,而南北地震带以东、长江以及北地区为北东东至近东西向,华南块体上为北 北西至北西向,与滑线场理论模型基本吻合。反映出中国大陆地壳变形的压应力主要来自印度板块与欧亚板块的俯冲碰撞。而太平洋板块与菲律宾板块对欧亚板块的作用力以及地幔向上的作用力总体  相似文献   

4.
渤海沿岸地区的现代构造运动   总被引:2,自引:0,他引:2  
本文通过地壳垂直形变和水平形变,阐述渤海沿岸地区现代构造运动。全区构造活动受北北东—北东向、北西向及东西向构造控制。垂直形成继承性较为明显。水平形变的主张应变大于主压应变。北北东—北东向构造主要为张扭性活动,北西向则以扭性为主导。水平形变量大于垂直形变量。  相似文献   

5.
用菲律宾海板块上7个站ITRF2000的速度建立了菲律宾海板块的整体旋转线性应变模型. 结果认为菲律宾海板块的现今运动是顺时针方向旋转,与NNR_NUVEL_1A估计的旋转方向一致,但与NNR_NUVE_1A估计的旋转极位置和旋转角速度有较大差别. 本文模型与Sella等建立的刚体运动模型相比能更精确地描述菲律宾海板块的现今构造运动与板内形变. 菲律宾海板块内部存在强烈的形变-应变场. 在板块上存在一致的向东形变,形变速率在中央构造线附近小,东、西边界附近大,南、北两端小,中部大,在Mariana弧上向东的形变速率达到484 mm/a. 板块上南北方向的形变,东、西部存在明显差别,东部的南北向形变速率很小,西部在Manila海沟附近南北向形变速率较大,北端向北的形变速率为113 mm/a,南端向南的形变速率为293 mm/a. 板块的中央构造线把板块的主应变场分为东、西两个区. 东区存在非常强烈的张应变,压应变则很弱. 主张应变为近东西方向,从中央构造线向东主张与主压应变率逐渐增加,板块东南边界附近(148°E,15°N)主张应变率最大为858×10-8/a. 在西区,存在很强的主压应变而主张应变则较弱,主压应变为NW-SE方向,主压与主张应变率呈现从中央构造向西逐渐增加的特征,在板块西北边界(122°E,23°N)附近,主压应变率最大为571×10-8/a. 菲律宾海板块主应变场的空间变化与板块内部及周围的构造背景密切相关,是构造应力场的反映.  相似文献   

6.
用GPS时间序列获取中国大陆微动态应变场/   总被引:4,自引:0,他引:4       下载免费PDF全文
基于中国大陆GPS观测在国际地球参考框架(ITRF)获得的站点位置,由三角形法通过反演逐年推算中国大陆年微动态应变场. 结果显示,研究区年微动态应变场大致以南北地震带为界. 西部地区存在方向大体一致的年主压应变优势分布方向, 方向自西向东、 由近南北向转为北东向,与近代应变场的方向一致,表明西部地区变形主要是由印度板块向北推进和西伯利亚地块相对南推形成的,且整体上仍是新构造运动的继承;东部大部分地区不存在年主应变的优势分布方向.年最大剪应变在不同地区差别很大,变化范围从4.13times;10-8~7.0times;10-10, 总体上西部大于东部. 同一区域年最大剪应变的多年变化表明,西部变化大,东部变化平缓. 年面膨胀显示,研究区大部分为压缩区,且同一区域的多年变化平缓.   相似文献   

7.
建立了板内块体的刚性弹塑性运动应变模型,并对其进行了块体应变参数唯一性与速度残差中误差最小检验.根据中国大陆及周围地区的速度场,估计了8个块体的应变参数,分析了这些块体的应变状态.本文估计的各个块体的应变状态与地质学、地球物理学方法估计的结果具有很好的一致性.由喜马拉雅块体主压应变方向估计的印度板块向欧亚板块碰撞力的主方向为北东7.1.   相似文献   

8.
京津唐地区地壳形变及现代构造运动   总被引:1,自引:0,他引:1       下载免费PDF全文
本文通过近年来,在京津唐地区取得的大地测量资料,研究本区现代构造运动,指出了北北东—北东向、北西向及东西向三组构造最为活动。它们是受近于水平方向北北西—南南东向主张应力和北东东—南西西向主压应力的应力场所控制,并以主张应力大于主压应力的作用方式出现;而又受深部构造的断块上拱和断陷的影响  相似文献   

9.
推导了板块的弹性运动方程.根据太平洋板块(PCFC)上空间大地测量的观测结果,建立了PCFC的弹性运动模型,该模型与板块实际运动状态的符合程度明显地优于刚体运动模型.研究表明:PCFC现今旋转的角速度比过去3Ma的平均值大0037°/Ma;在PCFC内部存在明显的水平形变,在15°S以北和2045°E以西地区存在一致的向西形变,北西与南西方向的形变速率分别为08~35 mm/a与10~34 mm/a;在板块的东南区存在一致的向东形变,北东与南东方向的形变速率分别为15~18 mm/a与28~91 mm/a.PCFC内部水平应变场的空间变化是有规律的,在PCFC的西北部,主压应变轴为NW-SE方向,主压应变率大于主张应变率;在PCFC的东南部,主压应变轴为NE-SW方向,主张应变率大于主压应变率;PCFC的东南边界是扩张边界,边界附近的主张应变率最大(平均为151×10-9/a),主张应变轴基本上与洋中脊的扩张方向一致;PCFC的西北边界是俯冲边界,边界附近的主压应变率最大(平均为075×10-9/a),主压应变轴基本上与太平洋板块的俯冲方向一致.  相似文献   

10.
堪察加地区现今地壳运动与变形特征研究   总被引:2,自引:1,他引:1       下载免费PDF全文
利用俄罗斯堪察加地区1995~2005年的GPS观测数据,研究了该区现今地壳水平运动速度场特征.在球坐标系中解算了各应变率分量,分析了应变率场的空间分布特征,并与地震学和地质学研究结果进行了综合对比分析.结果表明,堪察加半岛北部的微板块边界并不明显,堪察加南部测站运动速度大于中部和北部地区,愈靠近东部板块汇聚区,测站速度越大.从东海岸到西海岸,测站水平速度存在明显的梯度衰减特征,水平运动方向与太平洋板块向西北的俯冲方向基本一致.各应变率分量具有东部海岸大于中部和西海岸、从东至西呈梯度衰减的特点.堪察加大部分地区处于EW和NS向压缩状态,局部存在拉张.面应变率结果显示绝大部分为压缩区;刚性转动结果表明大部分地区表现为顺时针转动,北部地区和南端顺时针旋转性明显.东部有效应变率明显大于西部地区,东西向梯度衰减关系明显.主压应变率明显大于主张应变率,特别是在东海岸地区.主压应变率方向与中等以上地震的主压应力轴在水平方向的投影方向基本一致.地壳变形场在空间分布上的不一致性主要与太平洋板块在堪察加半岛东南侧的俯冲深度、俯冲方位角、俯冲倾角和俯冲带的耦合强度有关.  相似文献   

11.
In the paper, the current strain field and stress field in Chinese continent have been discussedbased on the processed data from two GPS campaigns of national GPS network carried out inthe years of 1994 and 1996. With a principal compressional strain direction of NNE, thewestern and castern parts of Qinghai-Xizang subplate are dominated by extensional straiu andthe central Part by compressional strain. Along the southwestern segment of southeastern partof Qinghai-Xizang subplate, i. e. Yunnan area, the princiPal compressional strain direction isNW and the compressional strain is equivalent to the extensional strain in magnitude. Theprincipal compressional strain of Xinjiang subplate is mainly NNE and NE with a difference inthe strain magnitude. The principal compressional strain in North China subplate is quite effective in NE and nearly EW directions with differences along some segments. However, thecompressional strain is corresponding to the extensional strain in magnitude in most areas. Theprincipal  相似文献   

12.
On the basis of the GPS data obtained from repeated measurements carried out in 2004 and 2007,the horizontal principal strain of the Chinese mainland is calculated,which shows that the direction of principal compressive strain axis of each subplate is basically consistent with the P-axis of focal mechanism solution and the principal compressive stress axis acquired by geological method.It indicates that the crustal tectonic stress field is relatively stable in regions in a long time.The principal compressive stress axes of Qinghai-Tibet and Xinjiang subplates in the western part of Chinese mainland direct to NS and NNE-SSW,which are controlled by the force from the col-lision of the Eurasia Plate and India Plate.The principal compressive strain axes of Heilongjiang and North China subplates in the eastern part direct to ENE-WSW,which shows that they are subject to the force from the collision and underthrust of the Eurasia Plate to the North America and Pacific plates.At the same time,they are also af-fected by the lateral force from Qinghai-Tibet and Xinjiang subplates.The principal compressive strain axis of South China plate is WNW-ESE,which reflects that it is affected by the force from the collision of Philippine Sea Plate and Eurasia Plate and it is also subject to the lateral force from Qinghai-Tibet subplate.It is apparent from the comparison between the principal compressive strain axes in the periods of 2004~2007 and 2001~2004 that the acting directions of principal compressive stress of subplates in both periods are basically consistent.However,there is certain difference between their directional concentrations of principal compressive stress axes.The sur-face strain rates of different tectonic units in both periods indicate that the events predominating by compressive variation decrease,while the events predominating by tensile change increase.  相似文献   

13.
Movement and strain conditions of active blocks in the Chinese mainland   总被引:2,自引:0,他引:2  
The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velocities at 1598 GPS stations obtained from GPS measurements carried out in the past years in the Chinese mainland and the surrounding areas. The movement and strain conditions of the blocks are analyzed. The active blocks in the Chinese mainland have a consistent E-trending movement component, but its N and S components are not consistent. The blocks in the western part have a consistent N-trending movement and the blocks in the eastern part have a consistent S-trending movement. In the area to the east of 90°E, that is the area from Himalayas block towards NE, the movement direction of the blocks rotates clockwisely and the movement rates of the blocks are different. Generally, the movement rate is large in the west and south and small in the east and north with a difference of 3 to 4 times between the rates in the west and east. The distributions of principal compressive strain directions of the blocks are also different. The principal strain of the blocks located to the west of 90oE is basically in the SN direction, the principal compressive strain of the blocks in the northeastern part of Qingzang plateau is roughly in the NE direction and the direction of principal compressive strain of the blocks in the southeastern part of Qingzang plateau rounds clockwisely the east end of Himalayas structure. In addition, the principal strain and shear strain rates of the blocks are also different. The Himalayas and Tianshan blocks have the largest principal compressive strain and the maximum shear strain rate. Then, Lhasa, Qiangtang, Southwest Yunnan (SW Yunnan), Qilian and Sichuan-Yunan (Chuan-Dian) blocks followed. The strain rate of the blocks in the eastern part is smaller. The estimation based on the stain condition indicates that Himalayas block is still the area with the most intensive tectonic activity and it shortens in the NS direction at the rate of 15.2±1.5 mm/a. Tianshan block ranks the second and it shortens in the NS direction at the rate of 10.1±0.9 mm/a. At present, the two blocks are still uprising. It can be seen from superficial strain that the Chinese mainland is predominated by superficial expansion. Almost the total area in the eastern part of the Chinese mainland is expanded, while in the western part, the superficial compression and expansion are alternatively distributed from the south to the north. In the Chinese mainland, most EW-trending or proximate EW-trending faults have the left-lateral or left-lateral strike-slip relative movements along both sides, and most NS-trending faults have the right-lateral or right-lateral strike-slip relative movements along both sides. According to the data from GPS measurements the left-lateral strike-slip rate is 4.8±1.3 mm/a in the central part of Altun fault and 9.8±2.2 mm/a on Xianshuihe fault. The movement of the fault along the block boundary has provided the condition for block movement, so the movements of the block and its boundary are consistent, but the movement levels of the blocks are different. The statistic results indicate that the relative movement between most blocks is quite significant, which proves that active blocks exist. Himalayas, Tianshan, Qiangtang and SW Yunnan blocks have the most intensive movement; China-Mongolia, China-Korea (China-Korea), Alxa and South China blocks are rather stable. The mutual action of India, Pacific and Philippine Sea plates versus Eurasia plate is the principal driving force to the block movement in the Chinese mainland. Under the NNE-trending intensive press from India plate, the crustal matter of Qingzang plateau moves to the NNE and NE directions, then is hindered by the blocks located in the northern, northeastern and eastern parts. The crustal matter moves towards the Indian Ocean by the southeastern part of the plateau.  相似文献   

14.
The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velocities at 1598 GPS stations obtained from GPS measurements carried out in the past years in the Chinese mainland and the surrounding areas. The movement and strain conditions of the blocks are analyzed. The active blocks in the Chinese mainland have a consistent E-trending movement component, but its N and S components are not consistent. The blocks in the western part have a consistent N-trending movement and the blocks in the eastern part have a consistent S-trending movement. In the area to the east of 90°E, that is the area from Himalayas block towards NE, the movement direction of the blocks rotates clockwisely and the movement rates of the blocks are different. Generally, the movement rate is large in the west and south and small in the east and north with a difference of 3 to 4 times between the rates in the west and east. The distributions of principal compressive strain directions of the blocks are also different. The principal strain of the blocks located to the west of 90°E is basically in the SN direction, the principal compressive strain of the blocks in the northeastern part of Qingzang plateau is roughly in the NE direction and the direction of principal compressive strain of the blocks in the southeastern part of Qingzang plateau rounds clockwisely the east end of Himalayas structure. In addition, the principal strain and shear strain rates of the blocks are also different. The Himalayas and Tianshan blocks have the largest principal compressive strain and the maximum shear strain rate. Then, Lhasa, Qiangtang, Southwest Yunnan (SW Yunnan), Qilian and Sichuan-Yunan (Chuan-Dian) blocks followed. The strain rate of the blocks in the eastern part is smaller. The estimation based on the stain condition indicates that Himalayas block is still the area with the most intensive tectonic activity and it shortens in the NS direction at the rate of 15.2 ± 1.5 mm/a. Tianshan block ranks the second and it shortens in the NS direction at the rate of 10.1 ± 0.9 mm/a. At present, the two blocks are still uprising. It can be seen from superficial strain that the Chinese mainland is predominated by superficial expansion. Almost the total area in the eastern part of the Chinese mainland is expanded, while in the western part, the superficial compression and expansion are alternatively distributed from the south to the north. In the Chinese mainland, most EW-trending or proximate EW-trending faults have the left-lateral or left-lateral strike-slip relative movements along both sides, and most NS-trending faults have the right-lateral or right-lateral strike-slip relative movements along both sides. According to the data from GPS measurements the left-lateral strike-slip rate is 4.8 ± 1.3 mm/a in the central part of Altun fault and 9.8 ± 2.2 mm/a on Xianshuihe fault. The movement of the fault along the block boundary has provided the condition for block movement, so the movements of the block and its boundary are consistent, but the movement levels of the blocks are different. The statistic results indicate that the relative movement between most blocks is quite significant, which proves that active blocks exist. Himalayas, Tianshan, Qiangtang and SW Yunnan blocks have the most intensive movement; China-Mongolia, China-Korea (China-Korea), Alxa and South China blocks are rather stable. The mutual action of India, Pacific and Philippine Sea plates versus Eurasia plate is the principal driving force to the block movement in the Chinese mainland. Under the NNE-trending intensive press from India plate, the crustal matter of Qingzang plateau moves to the NNE and NE directions, then is hindered by the blocks located in the northern, northeastern and eastern parts. The crustal matter moves towards the Indian Ocean by the southeastern part of the plateau.  相似文献   

15.
2015年尼泊尔强震序列对中国大陆的应力影响   总被引:11,自引:3,他引:8       下载免费PDF全文
基于2015年尼泊尔地震序列的破裂模型及均匀弹性半空间模型,计算了该地震序列传递到中国西藏境内发生在定日县地震和聂拉木县地震的应力.2015年尼泊尔地震序列导致定日县地震和聂拉木地震节面和滑动方向的库仑应力增加(2~3)×103 Pa和(2.4~3.1)×105 Pa,表明这两个地震受到尼泊尔地震序列的触发.其次,我们计算了2015年尼泊尔地震序列在中国大陆及其附近主要活动断层上产生的库仑应力变化.喜马拉雅主山前逆冲断裂和青藏高原内部的拉张正断层上的库仑应力有较大的增加,而青藏高原的走滑断裂,如阿尔金断裂、东昆仑断裂、玉树玛曲断裂、班公错断裂西部、嘉黎断裂的库仑应力有较大的降低.天山南北两侧的断裂库仑应力降低.而华北及东北、华南地区的库仑应力变化几乎可以忽略不计.最后,计算了该地震序列造成的水平应力变化.水平面应力在2015年尼泊尔地震序列北向(青藏高原大部和新疆区域)增加(拉张),而在地震序列东侧的西藏南部和川滇地区南部降低(压缩),在华北和东北仅有少许增加,在华南地区有少许降低.在中国西部,主压应力表现为以2015年地震序列为圆心的向外辐射状,而主张应力方向与同心圆切线方向大体一致.水平主压应力方向在东北地区为北东向,在华北地区为北东东向,在华南地区为南东东向.这种模式与现今构造应力场方向相似,表现了2015尼泊尔地震序列所代表的印度板块和欧亚板块的碰撞是中国大陆构造变形的主要动力来源.  相似文献   

16.
田建慧  罗艳 《地震》2019,39(2):110-121
本文收集了1976—2018年发生在中国大陆及其周边地区(15°~55°N, 65°~125°E)的4303个地震震源机制解, 分析了该区震源机制解和P、 T轴空间分布特征, 并使用这些震源机制解, 反演得到了中国大陆及周边地区二维构造应力场分布。 应力场反演结果表明, 云南大部、 青藏高原大部以及华北华南大部以走滑型应力性质为主, 印度洋板块与欧亚板块的强烈碰撞控制着中国西部地区, 大量的逆断型地震集中分布在青藏高原周缘和西域活动地块的天山地区。 青藏高原内部也存在正断型地震, 且应力场方向在26°N发生了很大的变化。 位于青藏高原东构造线以南的滇缅活动块体, 最大主压应力σ1方向在大致100°E发生突变, 由以西的NNE方向偏转到NNW方向。 中国东部的东北块体到华北块体再到华南块体, 最大主压应力方向有一个从NE向逐渐转变成EW向再变化到NW向的旋转趋势。 应力场总体结果表明, 中国东部应力场主要受到太平洋板块和菲律宾板块对欧亚大陆俯冲的作用, 中国西部主要受印度板块向北碰撞欧亚大陆的影响, 块体内部相互作用、 块体与断裂带相互作用也对应力场变化产生影响。  相似文献   

17.
中国大陆地壳应力场与构造运动区域特征研究   总被引:41,自引:16,他引:25       下载免费PDF全文
系统研究了1918~2006年间中国大陆及其周缘发生的3115个M4.6以上中、强地震的震源机制解,得到中国大陆地壳区域应力场的压应力轴和张应力轴空间分布的统计结果.探讨了大陆应力场的结构,以及周围板块运动对中国大陆应力场影响作用范围及其界线.结果表明,中国东部的华北地区受到太平洋板块向欧亚板块俯冲挤压的同时,又受到从贝加尔湖经过大华北直至琉球海沟的广阔范围内存在的方位为170°引张应力场的控制.华北地区大地震的震源机制解反映出,该区地震发生为NEE向挤压应力和NNW向张应力的共同作用结果.印度洋板块向欧亚板块的碰撞挤压运动所产生的强烈的挤压应力,控制了喜马拉雅、青藏高原、乃至延伸到天山及其以北的广大地区.在青藏高原周缘地区和中国西部的大范围内,压应力P轴水平分量位于20°~40°,形成了近北东方向的挤压应力场,大量逆断层型强震集中发生在青藏高原的南、北和西部周缘地区以及天山等地区. 本文结果表明,正断层型地震集中发生在青藏高原中部高海拔的地区.证明了青藏高原周缘区域发生南北向强烈挤压短缩的同时,中部高海拔地区存在着明显的近东西向的扩张运动.根据本文最新结果,得到了华北、华南块体之间地壳区域应力场的控制边界线,发现该分界线与大地构造、岩石圈板块构造图等有较大差异,特别是在大别及其以东地区, 该分界线向东南偏转,在沿海的温州附近转向东,最终穿过东海直至琉球海沟.台湾纵谷断层是菲律宾海板块与欧亚板块之间碰撞挤压边界,来自北西西向运动的菲律宾海板块构造应力控制了从台湾纵谷、华南块体,直到中国南北地震带南段东部地域的应力场. 地震震源机制结果还表明,南北地震带南段西侧其P轴大约为NNE方向,与青藏高原的P轴方位一致.南北地震带南段东侧其P轴大约为NWW方向,与华南块体的P轴方位一致.因此,将中〖JP2〗国大陆分成东、西两部分的南北地震带南段是印度洋板块与菲律宾海板块在中国大陆内部影响控制范围的分界线.  相似文献   

18.
Introduction In the last 20 years, with observation technique development in space monitoring to Earth, a large progress has been made in monitoring crustal movement. This makes it possible for us to study crustal movement and the present geodynamic. Continuous GPS observation conducted in Chinese mainland and its neighboring region provides us for studying the present strain field of crustal micro-behavior tectonic. Crustal micro-behavior tectonic means that we can study the dif-ference bet…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号