首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
青藏公路沿线冻土的地温特征及退化方式   总被引:1,自引:0,他引:1  
金会军  赵林  王绍令  晋锐 《中国科学D辑》2006,36(11):1009-1019
青藏高原多年冻土(以下简称冻土)具有地域分布广、厚度薄及稳定性差等特征. 过去几十年的气候变暖背景下, 冻土广泛退化, 地温升高, 夏季最大融化深度加深, 冬季冻结深度减小. 冻土已经产生下引式、上引式和侧引式退化. 冻土层厚度减薄, 或者在某些地区彻底消失. 冻土退化模式研究在冻土学、寒区工程和寒区环境管理方面具有重要意义. 由南至北穿越560 km冻土区的青藏公路沿线(简称青藏线)冻土在青藏高原腹地具有很好的代表性. 在水平方向上, 冻土退化在多年冻土下界附近的零星冻土分布区、融区边缘和岛状冻土区表现得更为明显. 当最大季节融化深度超过最大季节冻结深度时, 冻土开始下引式退化; 通常形成融化夹层, 造成多年冻土和季节冻结层不衔接. 当多年冻土层中地温梯度减小到小于下伏或周边融土层时, 则产生上引式或侧引式退化. 下引式退化进程可分为4个阶段: (1) 初始退化阶段, (2) 加速退化阶段, (3) 融化夹层阶段, (4) 最终多年冻土彻底融化为季节冻土阶段. 当多年冻土中地温梯度降至下伏融土层地温梯度以下时, 则产生上引式退化. 3种类型冻土温度曲线(稳定型、退化型和相变过渡型)展现了这些退化模式. 虽然存在不同地段和类型的地温特征, 三种退化模式的各种组合最终将使多年冻土消融, 转变成季节冻土. 过去25年来, 青藏线冻土年平均下引式退化速率变化在6~25 cm, 年平均上引式退化速率在12~30 cm, 零星多年冻土区年平均侧引式退化速率为62~94 cm. 这些观测结果超过所报道的过去20年来阿拉斯加亚北极不连续冻土区4 cm的年平均退化速率, 蒙古国不连续冻土区的4~7 cm的年平均退化速率, 以及雅库悌共和国亚北极和阿拉斯加北极稳定性冻土区退化速率.  相似文献   

2.
青藏高原多年冻土退化过程及方式   总被引:1,自引:0,他引:1  
气候变暖势必引起多年冻土的退化,基于数值模拟结果,将多年冻土退化过程按地温的深度剖面曲线形态划分为初始阶段、升温阶段、0梯度阶段、不衔接阶段和消失阶段.青藏高原多年冻土多是晚更新世残留,而全新世期间总体上是一个退化过程.根据青藏高原几个典型地区多年冻土深孔测温数据,判断目前高原多年冻土在其退化历史中所处的地位:高山地区处于升温阶段;中低山地区处于升温阶段末期;高平原和河谷盆地的多年冻土处于0梯度阶段;连续多年冻土下界附近及岛状冻土地区,正处于由0梯度向不衔接阶段过渡,多年冻结层边缘在萎缩,处于消失阶段.多年冻结层消融(消失)存在自下而上和自上而下两种方向.在升温阶段,多年冻土层中的热通量小于来自下伏地层中的地热通量时,部分地热流用于多年冻土底板相变耗热,发生自下而上的消融,随着多年冻土层中的地温梯度减小,用于底板消融的热量增加,直到地温曲线完全达到0梯度时,所有的地热流都用于多年冻土层融化潜热消耗,但其上部同时存在“热补偿”和“季节补偿”作用可以延缓多年冻土的消失;对于低温厚层多年冻土,当地面温度升高至可以抵消热补偿效应时,活动层中出现热积累,厚度增加,直至出现不衔接现象,同时存在“季节反补偿”作用,加剧了这一过程.  相似文献   

3.
未来50与100 a青藏高原多年冻土变化情景预测   总被引:20,自引:0,他引:20  
政府间气候变化委员会(IPCC)估计, 21世纪全球平均气温将增加1.4~5.8℃. 据预测未来50 a青藏高原气温可能上升2.2~2.6℃. 在建立冻土数值预测模型的基础上, 计算了在两种气温年升温率情景下青藏高原多年冻土自然平均状态50和100 a后可能发生的变化. 预测结果表明, 气候年增温0.02℃情形下, 50 a后多年冻土面积比现在缩小约8.8%, 年平均地温Tcp>−0.11℃的高温冻土地带将退化, 100 a后, 冻土面积减少13.4%, Tcp > −0.5℃的区域可能发生退化; 如果升温率为0.052℃/a, 青藏高原在未来50 a后退化13.5%, 100 a后退化达46%, Tcp>−2℃的区域均可能退化成季节冻土甚至非冻土. 预测结果对青藏高原寒区工程规划和建设的辅助决策具有重要意义.  相似文献   

4.
连续性分类系统的适用性与数据匮乏是过去青藏高原多年冻土制图的两个主要问题.文章基于高海拔多年冻土稳定性分类体系,在模型对比基础上,利用支持向量回归模型集合模拟了划分多年冻土稳定性的年平均地温,生产了空间分辨率为1km的青藏高原多年冻土稳定性分布图.制图中使用了青藏高原2005~2015年间共237个钻孔年平均地温(年变化深度处温度)观测数据,利用统计学习方法融合了地面观测与遥感冻结指数、融化指数、积雪日数、叶面积指数、土壤容重、高程和高质量的土壤水分再分析资料.该图显示,青藏高原多年冻土面积约115.02(105.47~129.59)×104km2,其中,极稳定型(?0.5℃)多年冻土面积分别为0.86×104、9.62×104、38.45×104、42.29×104和23.80×104km2,分别占青藏高原多年冻土的0.75%、8.36%、33.43%、36.77%和20.69%.以模拟的多年冻土稳定性分布图为基础,定义了划分多年冻土稳定型的遥感年平均地表温度和冻结数标准,这两个标准对于多年冻土稳定型的划分结果一致性分别达到69.6%和75.3%,对于多年冻土范围划分的一致性分别达到了90.1%和91.8%.  相似文献   

5.
多年冻土区铁路路基热状况对工程扰动及气候变化的响应   总被引:2,自引:0,他引:2  
基于青藏铁路沿线长期地温监测资料,对天然场地及铁路路基下部的浅层地温、多年冻土上限及下伏冻土地温动态变化过程进行对比分析,研究多年冻土区铁路路基热状况对于工程扰动及气候变化的响应过程.监测结果表明,路基修筑后边坡热效应显著,由此导致路基下部多年冻土热状况的不对称分布,必须引起足够的重视.块石路基修筑后,下部多年冻土上限抬升显著,其中阴坡路肩下抬升幅度普遍较阳坡路肩下显著.普通路基修筑后,在年平均地温低于?0.6~?0.7℃的地区下部多年冻土上限有不同程度的抬升,而在年平均地温高于?0.6℃的地区下部冻土上限则出现了一定程度的下降,其中阳坡路肩下降幅显著.受块石层冷却降温作用,低温冻土区块石路基下部浅层冻土地温有明显降温过程,而在高温冻土区这一降温趋势只存在于阴坡路肩下.对于普通路基,多年冻土上限抬升后,浅层冻土地温存在一定的升温过程.对于气候变暖,低温冻土区多年冻土的响应主要集中体现在冻土升温上,而高温冻土区多年冻土的响应则主要表现为冻土上限下降,冻土厚度减小.基于上述监测结果,可将目前青藏铁路路基热状况分为稳定型(低温冻土区块石路基)、亚稳定型(低温冻土区普通路基及高温冻土区块石路基)和不稳定型(高温冻土区普通路基).  相似文献   

6.
青藏高原多年冻土区天然气水合物形成条件模拟研究   总被引:12,自引:1,他引:11       下载免费PDF全文
基于野外气体地球化学调查研究,以及前人有关冻土表层温度、冻土层内地温梯度、冻土层下地温梯度等的资料,对青藏高原多年冻土区天然气水合物的形成条件开展了模拟研究. 结果显示:研究区冻土条件能够满足天然气水合物形成的基本要求;气体组成、冻土特征(如冻土厚度或冻土表层温度、冻土层内地温梯度、冻土层下地温梯度等)是影响研究区天然气水合物稳定带厚度的最重要因素,其在不同点位上的差异性可能导致天然气水合物分布的不均匀性的主要原因;研究区最可能的天然气水合物为甲烷与重烃(乙烷和丙烷)的混合气体型天然气水合物;在天然气水合物分布的区域,其产出的上临界点深度在几十至一百多米间,下临界点深度在几百至近一千米间,厚度可达到几百米. 与Canadian Mallik三角洲多年冻土区相比,青藏高原多年冻土区除了冻土厚度小些外,其他条件,如冻土层内地温梯度、冻土层下地温梯度、气体组成等条件较为相近,具有一定的可比性,预示着良好的天然气水合物潜力.  相似文献   

7.
气候变化条件下东北地区多年冻土变化预测   总被引:3,自引:0,他引:3       下载免费PDF全文
东北多年冻土(除非指明是季节冻土,以下将多年冻土简称冻土)是中国第二大冻土分布区,主要发育"兴安-贝加尔型"冻土.由于处在欧亚大陆冻土区南缘,冻土的热稳定性差,寒区生态的敏感性强.在气候变暖条件下,冻土已经和正在发生着"三向"退化.为预测冻土南界和地温变化,根据47个气象站资料并在SHAW模型对植被影响地表温度修正的基础上,建立了冻土地表温度分布的等效纬度模型.结合非稳态热传导模型的有限元数值计算,以多模型结合的方法,进一步计算和分析了目前、50年和100年后冻土地温分区变化.结果表明,在目前地表温度为1.5℃范围,仍可残留冻土.以0.048℃a-1气温递增速率,在目前地表温度为0.5℃和-0.5℃的区域,50年和100年后各自仍有可能存在冻土;冻土面积将由现在的2.57×105 km2各自减至1.84×105和1.29×105 km2,分别减少28.4%和49.8%,且东部退化幅度大于西部.同时,区域地温升高,冻土厚度减薄;稳定型(年平均地温Tcp≤-1.0℃)冻土面积逐渐减小,将由现在的1.07×105 km2分别减少至8.8×104 km2(50年后)和5.6×104 km2(100年后).相应地,不稳定型(Tcp〉-1.0℃)多年冻土和季节冻土的面积增加,冻土南界将显著北移.冻土环境的变化,将给东北寒区工程设施和生态环境带来重要影响.减少或避免人为地改变冻土赋存条件,是保护冻土环境较可行的途径.  相似文献   

8.
以IPCC SRES A2、A1B、B1三种气候变化模式为基础,利用数值方法研究了青藏直流联网工程冻土区装配式基础的冻融过程以及活动层、融化深度、地温的变化规律.结果表明:工程扰动和气候变暖改变了冻土的热状态,促进了冻土退化,均为影响基础长期稳定性的重要因素,其中混凝土桩基的强化导热作用加剧了冻融过程,气候升温导致活动层厚度增加,土层温度升高;随着深度的增加,冻土响应减弱,冻土温度变化幅度越小;在三种升温模式下50年后融化深度分别达到3.12m、5.07m和6.02m,而同期天然场地活动层厚度为2.07m、4.37 m、5.62 m,说明冻土对不同升温模式的响应程度不同,且中心冻土在气候变暖和工程扰动双重影响下退化更快;从第10年到第50年,这三种模式下桩基中心融化速率分别为1.5 cm·α-1,6.2 cm·α-1,8.6 cm·α-1,即随着升温速率的增加,土层融化深度增加,冻土退化速度加快;低升温率时冻土变化主要受工程作用,而在较高升温模式下冻土退化则主要受气候变暖的影响.  相似文献   

9.
青藏高原冻土带天然气水合物的形成条件与分布预测   总被引:44,自引:7,他引:37       下载免费PDF全文
冻土带是天然气水合物发育的两个重要地质环境之一.青藏高原平均海拔在4000m以上,多年冻土面积约1.4×106km2.本文根据青藏高原冻土层厚度和地温梯度特征,运用天然气水合物的热力学稳定域预测方法,确定中低纬度高海拔区冻土带天然气水合物的产出特征.青藏高原多年冻土带热成因天然气水合物形成的热力学相平衡反映,水合物顶界埋深约27~560m,底界埋深约77~2070m.初步计算表明,青藏高原冻土带水合物天然气资源约1.2×1011~2.4×1014m3.在冻土层越厚、冻土层及冻土层之下沉积层的地温梯度越小的地区,最有利于天然气水合物的发育.气温的季节性变化对天然气水合物影响不大.在全球气温快速上升的背景下,青藏高原天然气水合物将处于失稳状态,天然气水合物顶界下降、底界上升,与冻土带的退化相似,分布区逐渐缩小,最终将完全消失.  相似文献   

10.
高海拔多年冻土对全球变化的响应模型   总被引:21,自引:3,他引:18  
使用两个模型对青藏高原高海拔多年冻土分布现状进行模拟 .这两个模型是“高程模型”和“冻结指数模型” ,前者是建立在高海拔多年冻土三向地带性分布规律基础上的 ,描述高海拔多年冻土纬向地带性规律的高斯分布函数 ;后者是一个表面融化指数和表面冻结指数的无量纲比值 .模拟结果表明 ,青藏高原多年冻土在未来2 0~ 5 0a间不会发生本质性的变化 .但是 ,当 2 0 99年高原气温平均升高 2 .91℃后 ,青藏高原多年冻土将发生显著的变化 ,冻土消失比例高达 5 8.18% .  相似文献   

11.
礼乐滩是礼乐盆地的重要组成部分,自晚渐新世礼乐地块裂离北部陆缘后开始发育礁灰岩.为认识这些长期浸没海水中的礼乐礁体及其下伏地层的热状态与热演化特征,在详细分析礼乐滩钻井测温数据和镜质体反射率数据的基础上,对一条穿过礁体的骨干剖面进行了构造热演化数值模拟.结果显示,礁体区钻井2000~4500 m深度范围内温度介于30~90℃之间,井底与海底之间的平均地温梯度仅10℃·km~(-1)左右,地温梯度随深度逐渐增加,3000~4000m深度段地温梯度介于32~37℃·km~(-1);礁体下伏地层有机质曾经经历了比现今所处温度更高的古温度.进一步分析表明,高孔高渗的礁体上部因与周围低温海水发生热交换,导致地层温度降低、地温梯度和热流降低甚至为负值;与海水热交换作用随深度增加而减弱并最终停止,地层温度逐渐升高,地温梯度和热流值趋于正常;现今钻井3000~4000 m深度段地温梯度约为35℃·km~(-1),基底热流可能介于65~75 mW·m~(-2),平均约为70 mW·m~(-2);礁体发育区有机质热成熟度主要是在礁体与周围低温海水发生实际热交换前获得的,礁体与海水热交换作用导致地层温度逐渐降低,有机质热成熟度增长缓慢,现今生烃门限深度明显大于邻近的北1凹陷中部区域的门限深度.  相似文献   

12.
南北地震带北段地温场的初步探讨   总被引:6,自引:3,他引:6       下载免费PDF全文
本文利用39个地温梯度值及估算的热流值讨论了本区地温场的分布特征。并求取了居里等温面。结果表明:(1)全区平均地温梯度为3.2℃/100m,平均热流值为1.5HFU;(2)居里面的深度为14—34公里,强震主要发生在居里等温线的梯度带上。最后就地温场与地震的关系做了初步分析。  相似文献   

13.
青藏高原东缘地震活动与居里点深度之间的相关性   总被引:2,自引:1,他引:1       下载免费PDF全文
本文选取不同的地壳速度分区模型,应用双差定位法对2008—2017年发生在青藏高原东缘的地震进行了重新定位,共得到4921个精确定位结果.重定位后的地震更加集中分布于龙门山断裂带、鲜水河断裂以及四川盆地南缘,震源深度多为5~20 km.根据NGDC-720地磁场模型计算了青藏高原东缘的三分量磁异常及其梯度张量,重定位后的大多数地震位于负磁异常区域以及四川盆地西南缘的强-弱磁异常边界.基于三维分形磁化模型获得了青藏高原东缘的居里点深度,并计算了磁性层的平均地温梯度,进而利用一维稳态热传导方程获得了其地壳温度结构.结果显示青藏高原东缘大多数地震均发生在居里点深度较大、地温梯度较低的区域.大多数M≥2.0地震震源区温度为100~500℃,M≥4.0地震震源区温度多为200~400℃.2008年汶川MS8.0、2013岷县MS6.6、2014年鲁甸MS6.5以及2017九寨沟MS7.0地震震源区温度均为300℃左右,而2013年芦山MS7.0地震震源区温度接近约400℃,更多地受控于龙门山断裂带与鲜水河断裂交汇处的局部构造应力场异常.  相似文献   

14.
基于青藏高原多年冻土区三个钻孔的地球物理测井数据和钻孔编录资料,我们对多年冻土厚度和多年冻土层内地下冰与地球物理测井数据之间的关系进行了相关的分析研究.研究表明,当地层为土壤类型时,可以使用井径和侧向测井曲线来判断多年冻土层厚度;而当地层为致密的基岩时,不能使用上述两种测井曲线来判断多年冻土层厚度.此外,还可以使用长源距伽马-伽马曲线和侧向测井曲线来识别多年冻土层内部分地下冰层的位置,其前提条件是地下冰层具有一定的厚度,或即使厚度较薄,但连续出现.这一研究结果对于利用地球物理测井曲线来调查多年冻土情况具有一定的应用价值.  相似文献   

15.
冻土物理力学特性与温度密切相关,气候变暖背景下冻土路基地温场的分布和演化规律不仅会影响到路基的静力稳定性,还会影响到其在地震、车辆等动力荷载作用下的响应特征与稳定性。为此,基于现场实测路基坡面温度,系统开展气候变暖背景下青藏高原典型(东西、南北、45°)走向条件下冻土路基地温场分布及演化规律的模拟研究。结果表明,阴阳坡侧浅层土体冻结指数差异较融化指数差异更为显著,东西走向下阴坡冻结指数约为阳坡的2倍,而融化指数约为阳坡的0.83。阴阳坡侧路基本体及活动层季节冻融过程存在明显不同步,东西走向条件下阴坡冻结期(融化期)可较阳坡侧长(短)约1个月。路基修筑后,阴坡一侧路基下部人为上限均有一定的抬升,而阳坡仅南北走向有抬升。此后,在气候变暖及沥青路面吸热效应下,路基人为上限不断下降,最大速率可达20cm/a,且逐步出现融化夹层,其中阳坡融化夹层厚度普遍大于阴坡,差值最大可达2.5m。路基本体季节冻融过程的不同步、人为上限埋深及冻土地温分布的不对称性应在未来青藏高原冻土路基静力、动力稳定性设计和研究中予以考虑。  相似文献   

16.
白玉柱  徐杰  周庆  周本刚 《地震地质》2012,34(2):269-281
2001年11月14日,青藏高原北部东昆仑断裂带库赛湖段发生了MS8.1地震。此次地震的发震断裂在地质史上具有高速左旋滑动的特征,特别是晚更新世晚期以来库赛湖断裂的平均滑动速率达(14.8±2.8)mm/a。库赛湖断裂不同的滑动速率可能会对其未来发生的运动行为产生影响,为此文中研究了东昆仑活动断裂带库赛湖段不同滑动速率和不同断裂面初始摩擦系数对断裂破裂行为的影响,建立了库赛湖断裂段对应的速度和状态依赖摩擦定律控制的单自由度弹簧滑块模型。为得到合理的模型参数,模拟中采用了断裂位错模型,考察了相关古地震研究资料、历史地震资料以及前人的相关研究成果。通过模拟库赛湖断裂段在不同滑动速率下未来6ka的破裂行为,发现断裂滑动速率快可使地震复发周期缩短,滑动速率慢会使地震复发周期延长。例如,若断裂以现今平均14mm/a的初始滑动速率运动时,地震复发周期为2.1ka;若以18mm/a的初始滑动速率运动,其对应地震复发周期为1~1.5ka;而滑动速率为8mm/a时地震复发周期为2.1~2.5ka,但断裂滑动速率对地震发生时断裂错动的位移和错动速度没有规律性影响;断裂面初始摩擦系数的大小对地震复发周期有影响,初始摩擦系数较大可能会使地震周期减小,初始摩擦系数小可能会使地震复发周期增加;同时,断裂面初始摩擦系数较小可能会使地震发生时断裂错动的位移和错动速度变大。  相似文献   

17.
多年冻土活动层变化导致冻土区大范围地面变形,严重破坏区域内基础设施和水文地质条件,亟需加强活动层季节冻融过程的观测研究.本文提出一种基于分布式目标的小基线集时序InSAR(DSs-SBAS)的冻土形变监测方法.该方法采用分布式目标提取和特征值分解算法,并结合基于地温-形变约束关系的参考点选取新策略,提高了冻土形变监测结果的时空分辨率和可靠性.以祁连山黑河西支源头的野牛沟为研究区域,通过对27景Sentinel-1SAR影像进行时序InSAR分析,获取了2014-2016年该区多年冻土的形变时间序列和年均形变速率,并利用Stefan模型联合地温数据估算其季节性形变幅度.实地踏勘和结果分析表明:(1)研究区大部分多年冻土处于稳定状态(-1.0^+1.0cm·a^-1),在地形陡峭的南坡边缘及含冰量丰富的野牛沟河上游两侧沟底部分区域存在较大形变;(2)区域内冻土形变时间序列呈现年周期变化,冻土冻融形变存在季节性周期形变和季节性波动下沉两种形变特征,形变幅度和速率最大可达6.0cm和-3.0cm·a^-1;(3)不同区域的活动层冻结/融化始日和冻土形变存在明显差异,主要和冻土地貌、土壤类型以及活动层厚度有关.本文提出的方法在青藏高原多年冻土区大范围冻融监测和活动层厚度反演研究方面具有很大的应用潜力.  相似文献   

18.
目前,有关天然气水合物的相关研究越来越多,而天然气水合物相平衡曲线和稳定带厚度的研究也变得越来越重要.本文利用Sloan的CSMHYD程序研究了外界条件变化对天然气水合物相平衡曲线及稳定带厚度的影响.研究结果表明:当天然气水合物中含有其他气体时,除了氮气会使水合物稳定存在的区域变小外;其他气体都会使稳定区域变大,且甲烷含量越少,水合物越容易形成;对于本文中所提到的几种气体,丙烷和硫化氢对相平衡曲线的影响最大;另外,水合物稳定存在的区域会随着盐度增加而变小.地温梯度、水深、海底温度、气体组成和孔隙水盐度对稳定带厚度的影响不同,其中稳定带厚度与地温梯度呈指数相关关系,与水深呈对数相关关系,与海底温度、水合物中甲烷含量及气体组成呈线性相关关系.水深从1 000 m增加到4 000 m时,稳定带厚度增加了大约400 m;水深2 000 m情况下,地温梯度从0.02℃/m到0.1℃/m变化时,稳定带厚度减薄了大约660 m;底水温度从0~17℃的变化过程中,稳定带厚度减薄了大约1000m;在水合物中气体组成从纯甲烷到含20%乙烷时,稳定带厚度增加了大约170m;盐度在0~4.5 wt%的变化中,稳定带厚度减薄了大约130 m.由此可见,在这几种因素中,地温梯度和底水温度对稳定带厚度的影响较大.  相似文献   

19.
青藏高原及邻近区域的S波三维速度结构   总被引:25,自引:5,他引:20  
周兵  秦建业 《地球物理学报》1991,34(4):426-441,T001
本文收集了WWSSN台网和我国台网中13个地震台站的长周期地震记录,用140条10-90s瑞利波频散曲线和作者提出的Tarantola-Backus面波频散层析成象方法,作了青藏高原及邻区的速度反演,得出该地区岩石层速度结构的三维图象.结果表明,1.在10-110km深度范围内,速度结构出现与大地构造特征相关的分区性,显示出四个构造单元:青藏块体、柴达木-巴颜喀拉-三江块体、塔里木块体和印度块体.2.高原内部,深度为10-70km内速度较低,莫霍界面呈不对称盆形分布,藏北那曲附近地壳厚度超过70km,高原边缘壳厚为45-50km,90-110km为高速异常,表明高原内部存在上地幔盖层.3.高原北部的班公湖断裂和东部的三江断裂系是该区重要的分界线,是岩石层结构存在明显差异的重要接触部位,可能是冈瓦纳古陆与欧亚古陆的缝合带.4.柴达木-巴颜喀拉-三江块体内部速度分布不均匀,地壳厚度由北向南从45km加深到60km;在深度90-110km存在一低速层.5.塔里木地块内速度随深度均匀增加,从地壳到上地幔110km内没有发现低速层.地壳厚度约50km.  相似文献   

20.
1951~2002年中国东、西部地区地面气温变化对比   总被引:27,自引:1,他引:26       下载免费PDF全文
利用1951~2002年全国733个测站经过非均一性检验的月平均气温资料,在剔除50万以上人口大城市测站后,分析了52年来中国东、西部及青藏高原地区的气温变化趋势的一致性和差异性,并讨论了其可能原因.结果表明我国东、西部地区年、季平均气温变化有着较好的一致性;近52年来,我国东、西部和青藏高原地区年平均气温均呈升温趋势,年平均气温的增温速率东部为026℃/10a,西部018℃/10a,东部比西部高008℃/10a;季平均气温东部地区冬、春季的增暖趋势大于西部和青藏高原,而其夏、秋季的增暖趋势小于西部和青藏高原.我国东、西部地区年、季平均气温变化关系密切,说明其主要是受全球气候变化的影响而变化,但东部年平均气温的增暖总趋势大于西部,又说明地域差异在气温变化中也有重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号