首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
代银 《中学教研》2006,(12):38-39
文献[1]给出了双曲线平行弦的2个优美性质:性质1过双曲线ax22-yb22=1(a>0,b>0)顶点A的弦AQ交y轴于点R,过双曲线中心O的半弦OP与AQ平行,则|OP|2=21|AR|·|AQ|.性质2MN是过双曲线x2a2-by22=1(a>0,b>0)焦点F的弦,过双曲线中心O的半弦OP与MN平行,则|OP|2=2a|MN|.在此基础上,笔者对椭圆与抛物线的平行弦做了探究,有些结论令人惊喜.图1定理1如图1,过椭圆x2a2+yb22=1(a>b>0)顶点A的弦AQ交y轴于点R,过椭圆中心O的半弦OP与AQ平行,则|OP|2=21|AR|·|AQ|.证明设OP的参数方程为x=tcosα;y=tsinα,(α为倾斜角,t为参数)将x,y代入椭圆方…  相似文献   

2.
为了提高同学们的应试能力,特别是能够快捷地解答有关选择题和填空题的能力,本文归纳总结出圆锥曲线部分的实用小结论,以供参考.1椭圆1)椭圆的一般式方程:mx2 ny2=1(m>0,n>0,m≠n)2)椭圆的面积公式S=πab.3)点P(x0,y0)在椭圆xa22 by22=1(a>b>0)内部xa220 yb202<1;点P(x0,y0)在椭圆xa22 yb22=1外部ax202 yb202>1.图14)椭圆焦点弦及焦点三角形的性质:如图1,设椭圆C:xa22 by22=1(a>b>0),左焦点F1(-c,0),右焦点F2(c,0),P(x0,y0)是椭圆上的一点,则①焦半径公式:|PF1|=a ex0,|PF2|=a-ex0.②椭圆上不同3点A(x1,y1)、B(x2,y2)、C(x3,y3),则相…  相似文献   

3.
最近文[2]对文[1]中关于抛物线的弦对顶点张直角的一个充要条件作了推广,得出椭圆和双曲线的弦对顶点张直角的几个充要条件.本文我们要探讨的问题是将圆锥曲线的顶点改为圆锥曲线上其它任意的一个定点时,若所张角依然为直角,那么弦会过定点吗?反之弦过此定点时,弦所张角会为直角吗?回答是肯定的,即有下面的:定理1设直线l交椭圆xa22+by22=1(a>b>0)于A,B两点,点M(x0,y0)是椭圆上不同于A,B两点的一个定点,则MA⊥MB的充要条件是直线l过定点Nx0(a2-b2)a2+b2,y0(ab22+-ba22).证明先证必要性:设A(x1,y1),B(x2,y2),直线AB:x=ky+m,代入方程x2a2…  相似文献   

4.
《考试说明》要求考生:1掌握椭圆、双曲线、抛物线的定义、标准方程及其几何性质和椭圆的参数方程;2掌握圆锥曲线的初步应用.下面介绍圆锥曲线基础试题的考点和解析.考点1 求椭圆坐标的取值范围例1 (2000年新课程卷高考题)椭圆x29+y24=1焦点为F1和F2,点P为椭圆上的动点.当∠F1PF2为钝角时,点P的横坐标的取值范围.解析:设P(x0,y0)是曲线x2a2±y2b2=1上的一点,则|PF1|=|a+ex0|,|PF2|=|a-ex0|(e为离心率,F1、F2为左、右焦点).运用焦半径公式可简捷地解决与焦点三角形有关的问题.解:a=3,b=2,c=5.设P(x,y),由焦半径公式知|PF1|=3+53x.|…  相似文献   

5.
<正>定义:如图1,设F1,F2是椭圆x2/a2+y2/b2=1(a>b>0)的焦点,P是椭圆上的任意一点(异于长轴的端点),则称△F1PF2为椭圆的焦点三角形.性质一:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为2b2/a.  相似文献   

6.
直线和圆锥曲线的位置关系中,涉及弦的问题特别多,其中以弦的中点问题最为丰富多彩.中点弦问题是中学数学的一类重要问题,解决圆锥曲线的中点弦问题,有以下几种策略.1“设而不求”的策略例1已知P(1,1)为椭圆22194x+y=内一定点,过点P的弦AB被点P平分,求弦AB所在直线的方程.分析常规思路设直线AB的斜率为k由方程组求A、B的坐标,由AB的中点坐标建立k的方程求k,但注意到弦的中点坐标公式x=12(x1+x2),y=12(y1+y2),故可用韦达定理,绕过求交点的步骤.设所求直线的方程y=k(x?1)+1,并过A(x1,y1),B(x2,y2)两点,由方程组:22(1)1,1,94y k xx y????…  相似文献   

7.
设直线MN过抛物线的焦点F,与抛物线相交于M、N两点,则MN称为焦点弦.不妨设抛物线Y2=2px(p>0),MN的斜率为k,倾斜角为θ,M(x1,y1),N(x2,y2),MA、NB分别垂直于准线于A、B点.  相似文献   

8.
我们把连接圆锥曲线的焦点与曲线上任一点的连线段称为它们的焦半径,根据圆锥曲线的统一定义,很容易推导出圆锥曲线的焦半径公式.下面是用得较多的焦半径公式: (1)对于椭圆x2/a2 y2/b2=1(a>b>0)而言.|PF1|=a ex0,|PF2|=a-ex0. (2)对于双曲线x2/a2-y2/b2=1(a>0,b> 0)而言,|PF1|=ex0 a,|PF2|=ex0-a. (3)对于抛物线y2=2px(p>0)而言, |PF|=x0 p/2.  相似文献   

9.
轨迹问题设PQ是椭圆x2a2 by22=1(a>b>0)的弦,且PQ与x轴垂直,A1,A2是椭圆的左右顶点,求直线PA1和QA2交点的轨迹.解:由题意不妨设P(x0,y0),Q(x0,-y0),又知A1(-a,0),A2(a,0),故得直线PA1,QA2方程是y=x0y 0a(x a)和y=x0--y0a(x-a),联立两式解得x0=ax2,y0=axy,因为点P(x0,y0)在椭圆a  相似文献   

10.
定理1圆F以圆锥曲线的一个焦点F为圆中学教研·中学教研·心,以其通径之半为直径.过F的直线l与圆锥曲线、圆F依次交于点A,B,C,D,则|AB|·|CD|为定图1值(其值为圆半径的平方).下面以椭圆为例证明该定理,对于其它圆锥曲线不难类似证明.如图1,设椭圆x2a2+y2b2=1(a>b>0),圆F:(x-c)2+y2=b44a2(其圆心为椭圆的右焦点,直径为通径之半,即r=b22a).过F的直线l与椭圆、圆F依次交于A,B,C,D,欲证|AB|·|CD|=b44a2.证明若直线l的斜率不存在,验证可知结论成立.若直线l的斜率存在,设l的方程为y=k(x-c),①将①代入椭圆方程,整理得(b2+a2k2)x2-2a2ck…  相似文献   

11.
设P(x0,y0)是椭圆x2/a2+y2/b2=1(a>b>0)上的点,F1、F2为其左、右焦点.由椭圆第二定义易得|PF1|=a+ex0,|PF2|=a-ex0(e为离心率).这就是椭圆的焦半径公式,运用它可解决与焦点三角形有关的问题. 1.求坐标取值范围  相似文献   

12.
有心圆锥曲线的一个有趣现象   总被引:1,自引:0,他引:1  
问题1 设MN是垂直于椭圆x2/a2+y2/b2=1(a>b>0)长轴的一条动弦,A1A2是椭圆的长轴,则动直线MA1与NA2的交点轨迹是双曲线x2/a2-y2/b2=1.  相似文献   

13.
各种数学资料中 ,经常出现如下一类问题 :点 M为圆锥曲线上一动点 ,求它到圆锥曲线的一个焦点 F和平面上一定点 A的距离和的最值 .大多数学生对这类问题感到困难 ,不知如何入手 .本文利用圆锥曲线的定义巧妙地求出这类问题 .1 椭圆、双曲线、抛物线中的有关结论1.1 椭圆结论 1 设椭圆 x2a2 + y2b2 =1(a >b>0 )的左、右焦点分别为 F1 、F2 ,平面上一定点 Q(x0 ,y0 ) ,M为椭圆上任意一点 .(1)定点 Q(x0 ,y0 )在椭圆内部 (即 x20a2 + y20b2<1) ,则 | MF2 | + | MQ|的最小值是 2 a -| QF1 | ;最大值是 2 a + | QF1 | .(2 )定点 Q(x0 ,…  相似文献   

14.
圆锥曲线是解析几何中的重要内容,与圆锥曲线有关的轨迹问题也是教学的一个难点.本文给出圆锥曲线弦的定比分点的轨迹方程的几个通式,并说明它的应用.命题1设斜率为k的直线与椭圆b2x2+a2y2=a2b2(a>0,b>0)相交于A、B两点,动点M满足AM=λMB(λ为常数),则点M的轨迹方程是2(22)2(1)(2222b x+a ky+λ4?λb x+a y?a2b2)(b2+a2k2)=0.证明设点M(x,y),直线AB的参数方程为x0=x+t,y0=y+kt(t为参数),代入椭圆方程并整理得:(b2+a2k2)t2+2(b2x+a2ky)t+b2x2+a2y2?a2b2=0.设点A(x1,y1),B(x2,y2)对应的参数分别为t1,t2,则:22222t1+t2=?2(b x+a ky)/(b+a…  相似文献   

15.
我们把连接圆锥曲线的焦点与曲线上任一点的连线段称为它们的焦半径,根据圆锥曲线的统一定义,很容易推导出圆锥曲线的焦半径公式. 下面是用得较多的焦半径公式: (1)对于椭圆x2/a2+y2/b2=1(a>b>0)而言,|PF1|=a+ex0,|PF2|=a -ex0.  相似文献   

16.
在圆锥曲线中,其焦点既给圆锥曲线定“位”,又直接影响着圆锥曲线的某些“量”的变化,也就是圆锥曲线的众多性质都依赖于焦点,所以由焦点而引发出圆锥曲线的许多问题,使“过焦点问题”成为高考的热点题型,涉及焦点的高考试题已成为人们关注的热点.一、圆锥曲线的焦半径问题我们把连接圆锥曲线的焦点与曲线上任一点的连线段称为它们的焦半径,根据圆锥曲线的统一定义,很容易推导出圆锥曲线的焦半径公式.下面是用得较多的焦半径公式:(1)对于椭圆x2a2+y2b2=1(a>b>0)而言,|PF1|=a+ex0,|PF2|=a-ex0.(2)对于双曲线x2a2-y2b2=1(a>0,b>0)而言,|PF1…  相似文献   

17.
《福建中学数学》2005年第9期文[1]给出了圆锥曲线的一个性质定理:定理1过椭圆x2/a2 y2/b2=1焦点弦AB的两端点A、B所作的两条切线的交点必在此焦点所对应的准线上.定理2过双曲线x2/a2?y2/b2=1焦点弦AB的两端点A、B所作的两条切线的交点必在此焦点所对应的准线上.定理3过抛物线y  相似文献   

18.
一、有关圆锥曲线中点弦的斜率问题此类问题常设弦的两端点坐标为(x1,y1)、(x2,y2),分别代入圆锥曲线方程后,设法变换出表示弦的斜率的式子,从而使问题获解。例:已知直线L交椭圆于M、N两点,B(0,4)为椭圆与y轴正方向的交点。若△BNM的重心恰重合于椭圆的右焦点.试求L的方程如(图1)分析:解答本题的关键是求点P的坐标和前线L的斜率。注意到P是MN的中点,因此这是一个与中点弦斜率有关的问题。P(3,-2),设M(x1,y1),N(x2,y2)代入椭圆方程后相减:4(x1+x2)(x1-x2)+5(y1+y2)(y1-y2)=0L的方程为…  相似文献   

19.
定义1过椭圆中心的弦称为椭圆的直径.引例若动点P(x,y)与两定点A(-a,0),B(a,0)连线的斜率之积为定值-ab22(a>b>0),求动点P的轨迹方程.图1解如图1,直线PA,PB的斜率分别为kPA=yx a,kPB=yx-a(x≠±a),由已知kPA·kPB=-ab22,得x y a·x-y a=-ab22,化简得动点P的轨迹方程为xa22 yb22  相似文献   

20.
定义 以圆锥曲线上的一点、一个焦点及此焦点对应的顶点为其顶点的三角形称为“焦顶三角形”. 本文介绍圆锥曲线“焦顶三角形”的一个有趣性质,以飨读者. 定理1 设椭圆C:x/a2+y/b2=1(a>b>0)的一个“焦顶三角形”为AFB(其中F为一个焦点,A为F对应的顶点),设∠BAF=α,∠AFB=β,则tanα tanβ/2-1=e(e为C的离心率).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号