首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
《Drug delivery》2013,20(3):351-358
Abstract

Cucurbitacin B (Cu B), a potent anti-cancer agent, suffers with the problems of water-insoluble, gastrointestinal side effects and non-specific toxicity via oral administration and drawbacks in patient’s compliance and acceptance through injections. An integration of nanoscale carriers with mucoadhesive buccal films drug delivery system would resolve these issues effectively with greater therapeutic benefits and clinical significance. Thus, the drug loaded mucoadhesive buccal film was developed and characterized in this study and the carboxymethyl chitosan (CCS) was chosen as a bioadhesive polymer, glycerol was chosen as a plasticizer and phospholipid-bile salts-mixed micelles (PL-BS-MMs) was selected as the nanoscale carriers. The CCS-films containing Cu B loaded PL-SDC-MMs was evaluated for the mechanical properties, mucoadhesion properties, in vitro water-uptake, in vitro release and morphological properties, respectively. The optimal CCS-films containing Cu B loaded PL-SDC-MMs was easily reconstituted in a transparent and clear solution with spherical micelles in the submicron range. The in vivo study revealed a greater and more extended release of Cu B from nanoscale CCS-films compared to that from a conventional CCS films (C-CCS-films) and oral marketed tablet (Hulusupian). The absorption of Cu B from CCS-films containing Cu B loaded PL-SDC-MMs resulted in 2.69-fold increased in bioavailability as compared to conventional tablet formulation and 10.46 times with reference to the C-CCS-films formulation. Thus, this kind of mucoadhesive buccal film might be an alternative safe route for delivery of Cu B with better patient compliance and higher bioavailability for the treatments.  相似文献   

2.
Purpose. To investigate the use of buccal bioadhesive device in targeting controlled drug delivery to the gastrointestinal tract. Methods. A three-leg crossover study was designed to evaluate the application of buccal bioadhesive device for providing controlled drug delivery to the gastrointestinal tract of a model drug cyanocobalamin in four healthy adult male beagle dogs. Results. In vitro dissolution studies using deionized water as the medium indicated that 100% of the drug was released within 15 min from a immediate release oral capsule formulation, whereas 90% of the drug was released within a period of 18 hrs from a buccal bioadhesive device formulation. Drug release from the buccal bioadhesive devices appeared to follow Higuchi's square root of time dependent model. The terminal half-life of the drug following I.V. administration in four dogs was found to be 16.4 ± 2.4 hrs. Following immediate release oral capsule administration of the drug Cmax, tmax and bioavailability were 2333 ± 1469 ng/L, 2.5± 1.0 hrs and 14.1 ± 7.9%, respectively. Following buccal bioadhesive device administration of the drug Cmax, tmax and bioavailability were 4154 ± 1096 ng/L, 11 ± 1.2 hrs and 35.8 ± 4.1%, respectively. Significantly higher bioavailability of the drug was observed with the buccal bioadhesive device administration when compared to the immediate release oral capsule. Conclusions. The buccal bioadhesive device appears to improve the oral bioavailability of cyanocobalamin by providing controlled delivery of the drug to the gastrointestinal tract.  相似文献   

3.
A new bioadhesive buccal morphine tablet was developed for controlled release delivery of drug and improved bioavailability compared with oral controlled release tablet. In order to characterize the pharmacokinetic properties of this bioadhesive buccal formulation, a bioavailability study was performed in 12 healthy volunteers who received: a 30 mg oral controlled release tablet (A); a 20 mg aqueous solution retained in the mouth for 10 min (B); and the 60 mg bioadhesive buccal tablet placed between the lower gum and lip for 6 h (C). The mean amount of morphine absorbed from the solution was very low, only 2 mg of the 20 mg dose. After administration of forms A and C, plasma levels exhibit typical sustained release concentration–time curves. The mean amount of drug recovered from the residual bioadhesive buccal tablet after 6 h indicated that approximately 50% of the dose was released from the bioadhesive buccal tablet. The relative bioavailability of the buccal tablet (corrected for residual unabsorbed dose) compared with the controlled-release tablet was 98% based on the morphine AUC values. Good correlations between the AUC and the Cmax of the bioadhesive tablet for the drug and metabolite plotted versus the amount of morphine absorbed were found. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
《Drug delivery》2013,20(5):224-235
Abstract

Context: Mucoadhesive buccal films containing three layers (mucoadhesive layer, nanosuspension containing layer and backing membrane) were incorporated with carvedilol nanosuspension.

Objective: Formulation and evaluation of nanosuspension incorporated mucoadhesive buccal films of carvedilol for bioavailability enhancement by avoiding first-pass metabolism.

Methods: Carvedilol-loaded nanosuspension was prepared by a precipitation–ultrasonication method with varying concentrations of the polymer. The formulation was analyzed for size, size distribution, surface charge and morphology. Optimized nanosuspension was incorporated into drug gel layer which was sandwiched between a mucoadhesive layer and a backing layer to form tri-layered buccal films. They were evaluated for their physical, mechanical and bioadhesive parameters followed by in vitro and in vivo studies.

Results and discussion: Nanosuspension showed a negative zeta potential (?17.21?mV) with a diameter of around 495 nm and a polydispersity index of 0.203. Nanosuspension incorporated drug gel layer (62.4% drug loading) was optimized to contain 3% HPMC and 50?mg Carbopol 934P. The mucoadhesive layer and the backing layer were optimized to contain 3% HPMC and 1% ethyl cellulose, respectively. In vitro drug release was 69% and 62.4% in 9?h across synthetic membrane and porcine buccal mucosa, respectively. In vivo studies conducted in rabbit model showed 916% increase in the relative bioavailability in comparison to marketed oral tablet formulation. The Cmax and Tmax of the prepared formulation increased due to increased surface area of drug and also by-passing hepatic metabolism.

Conclusion: The drug delivery system has been designed as a novel platform for potential buccal delivery of drugs having high first-pass metabolism.  相似文献   

5.
Abstract

The conventional formulation of prednisolone is considered to be low in efficacy, primarily on account of their failure in providing and maintaining effective therapeutic drug levels. This study aims to focus on development of a mucoadhesive buccal delivery system with a twofold objective of offering a rapid as well as a prolonged delivery of prednisolone coupled with enhanced therapeutic efficacy. Buccoadhesive films of prednisolone were prepared by solvent-casting method using hydroxyl propyl methyl cellulose (K100), Carbopol 940 and/or Eudragit® NE 40?D. Placebo films possessing the most desirable physicomechanical properties were selected for drug loading. The effect of polymer and its content on film properties, i.e. mucoadhesive strength, swelling and hydration, in vitro drug release was studied. Based on these studies, film F7D was selected for ex vivo permeation across porcine cheek mucosa. The steady state flux of prednisolone across the buccal mucosa was found to be 105.33?±?32.07?µg/cm2/h. A comparative pharmacokinetic study of prepared film (F7D) and oral suspension of prednisolone was conducted. In vivo data of buccal film show greater bioavailability (AUC0–α: 24.26?±?4.06?µg.h/ml versus 10.65?±?2.15?µg.h/ml) and higher Cmax (2.70?±?0.38?µg/ml versus 2.29?±?0.32?µg/ml) value when compared to oral suspension. The data observed from this study highlight the feasibility of the buccal route as a viable option for delivery of prednisolone.  相似文献   

6.
Poor peroral therapeutic efficiency of selegiline is primarily due to the extensive hepatic metabolism and hence the need for an alternative route of administration. The present study is based on evaluation of a buccal film which is impregnated with selegiline nanospheres to enhance the systemic bioavailability. Selegiline-loaded nanospheres prepared using poly(lactide-co-glycolide) was embedded into buccal films (F1–F4) with varying polymer composition [hydroxypropyl methylcellulose and eudragit]. The developed films were evaluated for their physicomechanical properties, hydration, mucoadhesive strength, in vitro drug release and ex vivo permeation in order to identify the ideal system suitable for further development. In vivo studies were carried out on rabbits to assess the comparative pharmacokinetics profile of the selected buccal film with oral solution. Preliminary studies indicated that the prepared films exhibited excellent physical properties, adequate mucoadhesive strength and moderate hydration. In vitro drug release data of the buccal films (F1, F2 and F3) showed distinct profiles. Permeation studies indicated higher steady-state flux from film F3 (p?<?0.0001) when compared to film F2. In-vivo results of film (F3) demonstrated significant increase in absorption (p?<?0.0001), Cmax (~1.6-fold), Tmax, AUC0–α (~3-fold, p?<?0.0001) and improved bioavailability, when compared to control. This study concludes that the buccal delivery of selegiline using the developed buccal film (F3) would be a promising alternative approach for the treatment of Parkinson's disease.  相似文献   

7.
Pharmaceutical scientists throughout the world are trying to explore thin films as a novel drug delivery tool. Thin films have been identified as an alternative approach to conventional dosage forms. The thin films are considered to be convenient to swallow, self-administrable, and fast dissolving dosage form, all of which make it as a versatile platform for drug delivery. This delivery system has been used for both systemic and local action via several routes such as oral, buccal, sublingual, ocular, and transdermal routes. The design of efficient thin films requires a comprehensive knowledge of the pharmacological and pharmaceutical properties of drugs and polymers along with an appropriate selection of manufacturing processes. Therefore, the aim of this review is to provide an overview of the critical factors affecting the formulation of thin films, including the physico-chemical properties of polymers and drugs, anatomical and physiological constraints, as well as the characterization methods and quality specifications to circumvent the difficulties associated with formulation design. It also highlights the recent trends and perspectives to develop thin film products by various companies.  相似文献   

8.
A multiple-unit system comprising mucoadhesive bilayer buccal tablets of carvedilol-loaded chitosan microspheres (CMs) was developed to improve bioavailability and therapeutic efficacy of carvedilol. Drug-loaded CMs were prepared by spray drying, evaluated for powder and particle characteristics, and optimized batch of CMs was compressed into bilayer buccal tablets using Carbopol. Tablets were evaluated for physicochemical parameters, in vitro drug release, in vivo pharmacokinetic and pharmacodynamic studies. Optimized formulation, CMT1 (CMT, chitosan microsphere tablet) showed maximum mucoadhesive force (50?±?1.84?dyne/cm2), exhibited 73.08?±?3.05% drug release and demonstrated zero-order kinetics with non-Fickian release mechanism. Pharmacokinetic studies in rabbits showed significantly higher Cmax (71.26?±?6.45?ng/mL), AUC0–10 (AUC, area under the curve 390.75?±?5.23?ng/mL/h) and AUC0–∞ (664.72?ng/mL/h) than carvedilol oral tablet. Pharmacodynamic studies confirmed reduction in mean arterial pressure, heart rate, body weight and triglyceride on administration of bilayer buccal tablet compared to oral carvedilol tablet. Multiple-unit system exhibited enhanced bioavailability and sustained release of carvedilol, indicating its improved therapeutic potential for the treatment of hypertension.  相似文献   

9.
Duloxetine hydrochloride (DH) is a serotonin–norepinephrine reuptake inhibitor (SSNRI) indicated for the treatment of depression. Duloxetine suffers from reduced oral bioavailability (≈50%) due to hepatic metabolism. This study aims to develop DH buccoadhesive films to improve its bioavailability. DH buccoadhesive films were prepared adopting the solvent casting method using hydroxypropyl methylcellulose (HPMC) and polyvinyl alcohol (PVA). The prepared films were evaluated for weight uniformity, drug content, surface pH, swelling index, mucoadhesion strength and drug release percentages. Accelerated stability and bioavailability studies in healthy human volunteers were also performed for the selected films. Results of the evaluation tests showed that the optimum physicochemical characters were obtained by the films prepared with 2% HPMC using 10% propylene glycol (F2 films). Accelerated stability studies revealed that DH showed proved stability throughout the experiment time. DH bioavailability from F2 films was determined and compared with that of the marketed oral capsules (Cymbalta® 30?mg). The pharmacokinetic results showed that Cmax for F2 was higher than the market product. In addition, ANOVA analysis showed that a Tmax of F2 film was significantly lower, while, the AUC0–72 of F2 was significantly higher than that of Cymbalta capsules. The percentage relative bioavailability of DH from F2 was found to be 296.39%. Therefore, the prepared buccal films offer an alternative route for the administration of DH with the possibility of improving its bioavailability.  相似文献   

10.
In this study, a novel orodispersible film (ODF) containing drug nanoparticles was developed with the goal of transforming drug nanosuspensions into a solid dosage form and enhancing oral bioavailability of drugs with poor water solubility. Nanosuspensions were prepared by high pressure homogenization and then transformed into ODF containing drug nanoparticles by mixing with hydroxypropyl methylcellulose solution containing microcrystalline cellulose, low substituted hydroxypropylcellulose and PEG-400 followed by film casting and drying. Herpetrione, a novel and potent antiviral agent with poor water solubility that extracted from Herpetospermum caudigerum, was chosen as a model drug and studied systematically. The uniformity of dosage units of the preparation was acceptable according to the criteria of Japanese Pharmacopoeia 15. The ODF was disintegrated in water within 30 s with reconstituted nanosuspensions particle size of 280 ± 11 nm, which was similar to that of drug nanosuspensions, indicating a good redispersibility of the fast dissolving film. Result of X-ray diffraction showed that HPE in the ODF was in the amorphous state. In the in vitro dissolution test, the ODF containing HPE nanoparticles showed an increased dissolution velocity markedly. In the pharmacokinetics study in rats, compared to HPE coarse suspensions, the ODF containing HPE nanoparticles exhibited significant increase in AUC0–24h, Cmax and decrease in Tmax, MRT. The result revealed that the ODF containing drug nanoparticles may provide a potential opportunity in transforming drug nanosuspensions into a solid dosage form as well as enhancing the dissolution rate and oral bioavailability of poorly water-soluble drugs.  相似文献   

11.
Tramadol is a synthetic non‐opiate analgesic drug and effective for many kinds of chronic and acute pain. This study compared the bioavailability of tramadol after different administration routes in rats (oral, buccal and nasal). A simple HPLC analytical approach was used to determine the concentration of tramadol in plasma. The pharmacokinetic behavior and bioavailability of tramadol after administration via different routes in rats were investigated. Nasal and buccal administration of tramadol resulted in a fast increase followed by a rapid decrease in the plasma tramadol concentration. The Cmax values following buccal and nasal administration were 6 times and 20 times higher than that of oral administration, respectively, (6827.85 ± 7970.87 ng/ml, 22191.84 ± 5364.86 ng/ml, vs 1127.03 ± 778.34 ng/ml). The relative bioavailabilities of the nasal‐ and buccal‐administered drug when compared with the oral route were 504.8% and 183.4%, respectively, which is much higher than that of oral administration. Nasal and buccal administration increased the bioavailability of tramadol, which may allow for a reduction in the dose of tramadol and a subsequent decrease in both side effects and toxicity. Therefore, this approach provides an effective choice for the delivery of tramadol, an analgesic drug. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Objective: To compare the pharmacokinetic profiles of diclofenac potassium liquid-filled soft gelatin capsules (DPSGC) using patented ProSorb® dispersion technology with an immediate-release, diclofenac potassium 50-mg comparator tablet in two open-label, single-dose, randomized, crossover relative bioavailability studies in healthy volunteers. Methods: In Study 1, volunteers (n = 21) received DPSGC 50 mg or a diclofenac potassium 50-mg comparator tablet in two inpatient study periods. In Study 2 (n = 54), volunteers received DPSGC 25 mg, DPSGC 50 mg, or a diclofenac potassium 50-mg comparator immediate-release tablet in three inpatient study periods. Results: In both studies, DPSGC 50 mg displayed a significantly shorter Tmax and higher Cmax than the 50-mg diclofenac potassium comparator tablet. DPSGC 25 mg (Study 2) produced a shorter Tmax (0.45 h) and an equivalent Cmax (1125 ng/ml) to the 50-mg comparator drug. Plasma diclofenac concentration–time courses for the diclofenac potassium 50-mg comparator tablet showed many low, delayed, or multiple peaks compared with DPSGC treatments. Conclusions: DPSGC 25 mg and 50 mg were more rapidly and consistently absorbed than diclofenac potassium 50-mg comparator tablets. The Cmax of DPSGC 25 mg was equivalent to the 50-mg diclofenac potassium comparator tablet. These characteristics may be beneficial when fast, consistent drug absorption is needed.  相似文献   

13.
First-pass metabolism can be overcome by sublingual drug delivery, and quick drug entry into the systemic circulation can be obtained. In certain diseases such as migraine therapy, taking fast pharmacological response is an important criteria. In this study, zolmitriptan sublingual tablets were prepared by direct compression method using different mucoadhesive polymers such as hydroxypropyl methyl cellulose, chitosan and sodium carboxy methyl cellulose at a concentration range of 0.5-5% to reduce flushing action of saliva and provide enough time for drug to be absorbed. Tablets were evaluated for the physical properties, and optimum formulations were chosen for in vivo studies to carry on sheep model. The tablets disintegrated rapidly, and dissolution tests revealed that zolmitriptan was dissolved from the formulation within the compendial limits. This especially showed us that the concentration range of polymers is in acceptable limit. It was also concluded that microcrystalline cellulose, spray-dried lactose and sodium starch glycolate are the appropriate excipient and formulated in good proportions. In vivo studies indicated that formulation containing 5% chitosan has the maximum Cmax and AUC and minimum tmax values (p < 0.05). As a result, sublingual tablet administration of zolmitriptan formulated with appropriate excipients and especially with chitosan seems promising alternative to traditional routes.  相似文献   

14.
Mucoadhesive films containing curcumin‐loaded nanoparticles were developed, aiming to prolong the residence time of the dosage form in the oral cavity and to increase drug absorption through the buccal mucosa. Films were prepared by the casting method after incorporation of curcumin‐loaded chitosan‐coated polycaprolactone nanoparticles into plasticized chitosan solutions. Different molar masses of mucoadhesive polysaccharide chitosan and concentrations of plasticizer glycerol were used to optimize the preparation conditions. Films obtained using medium and high molar mass chitosan were found to be homogeneous and flexible. Curcumin‐loaded nanoparticles were uniformly distributed on the film surface, as evidenced by atomic force microscopy and high‐resolution field‐emission gun scanning electron microscopy (FEG‐SEM) images. Analyses of film cross sections using FEG‐SEM demonstrate the presence of nanoparticles inside the films. In addition, films proved to have a good rate of hydration in simulated saliva solution, displaying a maximum swelling of around 80% and in vitro prolonged‐controlled delivery of curcumin. These results indicate that the mucoadhesive films containing nanoparticles offer a promising approach for buccal delivery of curcumin, which may be particularly useful in the treatment of periodontal diseases that require a sustained drug delivery.  相似文献   

15.
A bilayered mucoadhesive buccal film containing a combination of ornidazole (OD) and dexamethasone sodium phosphate (DEX) was prepared using solvent casting to treat oral ulcers. Films were systematically evaluated in vitro to obtain the optimum formulation. The therapeutic effects of these films were investigated in the rabbit oral ulcer model and the in vivo release of OD and DEX in the human oral cavity was also evaluated. The backing layer contained ethyl cellulose and an optimal mucoadhesive layer containing both OD and DEX was produced. Films from the optimum formulation were 0.427?±?0.015?mm thick, weighed 55.89?±?0.79?mg, and had a surface pH of 6.34?±?0.01. The drug content of the optimum formulation approximated the theoretical value with good uniformity (2.959?±?0.106?mg/cm2 for OD and 0.877?±?0.031?mg/cm2 for DEX). The formulation showed favorable swelling characteristics and both drugs were released at >95% after 4?h. Moreover, the compound film had a statistically significant effect on mucosal repair and reduced ulcer inflammation without stimulating the human oral mucosa. Cmax of OD in saliva was 37.04?μg/ml and that of DEX was 9.737?μg/ml. Given promising therapeutic effects, the compound film developed here could become a local drug delivery device for treating oral ulcers.  相似文献   

16.
The objective of the study was to prepare and characterize the domperidone (DOM) hot-melt extruded (HME) buccal films by both in vitro and in vivo techniques. The HME film formulations contained PEO N10 and/or its combination with HPMC E5 LV or Eudragit RL100 as polymeric carriers, and PEG3350 as a plasticizer. The blends were co-processed at a screw speed of 50 rpm with the barrel temperatures ranging from 120–160°C utilizing a bench top co-rotating twin-screw hot-melt extruder using a transverse-slit die. The HME films were evaluated for drug content, drug excipient interaction, in vitro drug release, mechanical properties, in vivo residence time, in vitro bioadhesion, swelling and erosion, ex vivo permeation from HME films and the selected optimal formulation was subjected for bioavailability studies in healthy human volunteers. The extruded films demonstrated no drug excipient interaction and excellent content uniformity. The selected HME film formulation (DOM2) exhibited a tensile strength (0.72 Kg/mm2), elongation at break (28.4% mm2), in vivo residence time (120 min), peak detachment force (1.55 N), work of adhesion (1.49 mJ), swelling index (210.2%), erosion (10.5%) and in vitro drug release of 84.8% in 2 h. Bioavailability from the optimized HME buccal films was 1.5 times higher than the oral dosage form and the results showed statistically significant (p < 0.05) difference. The ex vivo–in vivo correlation was found to have biphasic pattern and followed type A correlation. The results indicate that HME is a viable technique for the preparation of DOM buccal-adhesive films with improved bioavailability characteristics.  相似文献   

17.
BMS-663068 is a phosphonooxymethyl ester prodrug under development for the treatment of HIV/AIDS. The prodrug is designed to overcome the solubility-limited bioavailability of the active moiety, BMS-626529. BMS-663068 is not absorbed from the gastrointestinal (GI) tract and requires enzymatic conversion by alkaline phosphatase to BMS-626529 immediately before absorption. In the light of the known short in vivo half-life of BMS-626529, compartmental absorption modeling was used to predict the potential feasibility of extended-release (ER) delivery to achieve target Cmax:Cmin ratios. To further refine the model with respect to colonic absorption, the regional absorption of BMS-626529 following delivery of BMS-663068 to upper and lower GI sites was characterized through a site of absorption study in human subjects. A refined model was subsequently applied to guide the development of ER tablet formulations. Comparisons of results from the refined model to the in vivo human pharmacokinetic data for three selected ER formulations demonstrate the utility of the model in predicting feasibility of ER delivery and in directing formulation development.  相似文献   

18.
Administration of almotriptan as an oral therapy is largely limited because of poor aqueous solubility and rather low bioavailability. The aim of present investigation was to formulate oral mucoadhesive film of almotriptan to improve the drug delivery and desired therapeutic effects. Placebo films (F1-F8) were prepared by varying the concentrations of Proloc 15 (7.5-15% w/v) and Eudragit RL 100/RS 100 (15-30% w/v) polymers. Physicomechanical and pharmaceutical characteristics of drug loaded films (FA1-FA4) were examined. Selected FA4 film was evaluated in vivo by assessing the pharmacokinetic profile and compared with oral therapy in rabbits. FA1-FA4 films exhibited excellent physicomechanical properties and rapid hydration. A biphasic and considerably greater drug release (p < 0.05) was observed in FA3 and FA4 films contain higher amount of hydrophilic polymer. The rate of permeation of almotriptan was found to be significantly higher in FA4 than FA3 film (p < 0.005). Fourier transform infrared spectral scan indicates no incompatibility exists between the drug and polymers used. Differential scanning calorimetry thermogram represents the evidence of almotriptan amorphization and molecular dispersion of it in the film. Scanning electron microscopy images shows that FA4 possess good morphological features and hence suitable for use in the buccal application. In vivo data demonstrated rapid and efficient absorption (p < 0.005) of almotriptan with greater AUC0-12 (>2 folds, p < 0.0001) by FA4 film as compared to oral (control). In general, the data established the potential of FA4 film to improve the therapeutic delivery of almotriptan and offers a promising option in migraine therapy.  相似文献   

19.
王倩  苏峰  刘为中  何广卫 《安徽医药》2017,21(3):399-403
口腔速溶膜剂作为一种新型的口腔黏膜吸收固体速释制剂,具有释药迅速、给药方便、病人顺应性好等优势,尤其适用于吞咽不便的儿童.目前越来越多的药物被开发成此剂型并推向市场.该研究介绍了口腔速溶膜的处方组成、制备工艺、质量评价及与其它新剂型结合应用的研究进展,以期对此类制剂的研发提供参考.  相似文献   

20.
Steady-state bioavailability and day-to-day variability of plasma levels were evaluated in 18 healthy male subjects in a crossover study of multiple once-daily administration of two novel oral drug delivery systems of metoprolol and an immediate-release tablet (100 mg metoprolol tartrate). Data were collected over two consecutive 24-hr dosing intervals on treatment days 6 and 7. The two extended-release formulations investigated were metoprolol CR/ZOK (95 mg metoprolol succinate), a multiple-unit system consisting of several hundred membrane-coated delivery units, and metoprolol OROS (95 mg metoprolol fumarate), a single-unit osmotic delivery system. The extended drug release and absorption observed after administration of metoprolol CR/ZOK and metoprolol OROS resulted in similar steady-state plasma concentrations after once-daily dosing. Compared to the immediate-release tablet, they produced considerably lower plasma peaks, three- to fourfold higher trough concentrations, 8–9 hr longer mean residence times, and 20% lower relative bioavailability. Moreover, the two once-daily metoprolol products were found bioequivalent in C max and AUC based on 90% confidence intervals for the mean ratio CR/OROS. Repeated plasma concentration measurements on two consecutive 24-hr periods suggested that all three metoprolol treatments produced reproducible and consistent plasma concentrations from day to day at steady state. Assessment of day-to-day variability, however, resulted in significantly lower variation in AUC for the multiple-unit CR/ZOK formulation compared to the single-unit OROS tablet. These results imply that there may be formulation-related differences in the in vivo behavior of the two products despite their being bioequivalent in extent and rate of absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号