首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Exaggerated levels of 4-hydroxynonenal (HNE) and 5-lipoxygenase (5-LO) co-exist in macrophages in atherosclerotic lesions, and activated macrophages produce MMP-9 that degrades atherosclerotic plaque constituents. This study investigated the effects of HNE on MMP-9 production, and the potential role for 5-LO derivatives in MMP-9 production in murine macrophages. Stimulation of J774A.1 cells with HNE led to activation of 5-LO, as measured by leukotriene B4 (LTB4) production. This was associated with an increased production of MMP-9, which was blunted by inhibition of 5-LO with MK886, a 5-LO inhibitor or with 5-LO siRNA. A cysteinyl-LT1 (cysLT1) receptor antagonist, REV-5901 as well as a BLT1 receptor antagonist, U-75302, also attenuated MMP-9 production induced by HNE. Furthermore, LTB4 and cysLT (LTC4 and LTD4) enhanced MMP-9 production in macrophages, suggesting a pivotal role for 5-LO in HNE-mediated production of MMP-9. Among the MAPK pathways, LTB4 and cysLT enhanced phosphorylation of ERK and p38 MAPK, but not JNK. Linked to these results, a p38 MAPK inhibitor as well as an ERK inhibitor blunted MMP-9 production induced by LT. Collectively, these data suggest that 5-LO-derived LT mediates HNE-induced MMP-9 production via activation of ERK and p38 MAPK pathways, consequently leading to plaque instability in atherosclerosis.  相似文献   

2.
Leukotriene B4 (LTB4) is a lipid inflammatory mediator derived from membrane phospholipids by the sequential actions of cytosolic phospholipase A2 (PLA2), 5-lipoxygenase (5-LO) and leukotriene A4 (LTA4) hydrolase. Several inflammatory diseases, including asthma, chronic obstructive pulmonary disease, arthritis and inflammatory bowel disease, have been associated with elevated levels of LTB4. As a result, pharmacological strategies to modulate the synthesis of LTB4 (inhibition of PLA2, 5-LO or LTA4 hydrolase) or the effects of LTB4 itself (antagonism of LTB4 receptors) are being developed by several companies. Two G-protein-coupled receptors mediate the effects of LTB4, namely BLT1 and BLT2. The pharmacology, expression and function of these two receptors were last reviewed by Tager and Luster in 2004. Since then, there has been an increased understanding of the function of these receptors, in particular for the lesser understood of the two receptors, BLT2. Furthermore, since last reviewed in 1996, there have been several clinical developments in the use of BLT receptor antagonists for inflammatory diseases. This review summarizes the latest preclinical and clinical developments in BLT antagonism for inflammatory diseases and discusses potential future developments.  相似文献   

3.

Background and purpose:

High level of plasma catecholamines is a risk factor for vascular diseases such as hypertension and atherosclerosis. Catecholamines induce hypertrophy of vascular smooth muscle through α1-adrenoceptors, which in cell culture involves the transactivation of epidermal growth factor receptor (EGFR). We hypothesized that EGFR transactivation was also involved in contractions of rat aorta mediated by α1-adrenoceptors.

Experimental approach:

Thoracic aorta was isolated from 12–14 week old male Wistar rats. In vitro aortic contractile responses to cumulative doses of phenylephrine were characterized in the absence and presence of the EGFR kinase inhibitors, AG1478 and DAPH, in intact and endothelium-denuded rings. Involvement of signal transduction pathways was investigated by using heparin and inhibitors of Src, matrix metalloproteinase (MMP), extracellular signal-regulated kinase (ERK)1/2 and phosphatidyl inositol 3-kinase (PI3K). Phosphorylation of EGFR and ERK1/2 was measured after short-term phenylephrine or EGF stimulation in aorta segments in the presence of AG1478 and the PI3K inhibitor, wortmannin.

Key results:

AG1478 and DAPH concentration dependently attenuated phenylephrine-induced contractile responses in intact or endothelium-denuded aortic rings. Inhibition of PI3K (wortmannin and LY294002) but not heparin or inhibitors of Src or MMP, prevented the effect of AG1478 on the responses to phenylephrine. Phenylephrine induced phosphorylation of EGFR, which was partially blocked by AG1478. Phenylephrine also increased phosphorylation of ERK1/2, time-dependently and was blocked by AG1478 and wortmannin.

Conclusions and implications:

Contractions of rat thoracic aorta mediated by α1-adrenoceptors involved transactivation of EGFR, mediated via a PI3K and ERK1/2 dependent pathway.  相似文献   

4.
  1. The actions of N-acetylcysteine (NAC) on hydrogen peroxide (H2O2) and leukotriene B4 (LTB4) production by human resting and stimulated peripheral blood neutrophils and alveolar macrophages were investigated.
  2. At a concentration of 100 μM, NAC significantly (P<0.01) suppressed the accumulation of H2O2 in the incubation medium of resting and opsonized zymosan (OZ; 0.5 mg ml−1)- or N-formylmethionyl-leucyl-phenylalanine (fMLP; 1 μM)-stimulated neutrophils and of resting and OZ-stimulated macrophages. At concentrations of 10 μM and above, NAC augmented significantly the level of LTB4 in the supernatants of OZ- and fMLP-stimulated neutrophils (P<0.01 and P<0.05, respectively) and OZ-stimulated macrophages (P<0.05 at 10 μM, P<0.01 at 100 μM NAC).
  3. NAC (100 μM) caused a significant (P<0.01) reduction in the quantity of measurable H2O2 when incubated with exogenous H2O2 concentrations equivalent to those released from OZ-stimulated neutrophils and macrophages. At no concentration did NAC affect quantitites of measurable LTB4 when incubated with exogenous LTB4.
  4. Superoxide dismutase (SOD), which catalyzes the conversion of superoxide anion to H2O2 had no significant effect on LTB4 production by human neutrophils. In contrast, catalase, which catalyzes the conversion of H2O2 to H2O and O2, caused a pronounced, statistically significant (P<0.01) increase in the levels of LTB4 measured in the supernatants of OZ- and fMLP-stimulated neutrophils.
  5. H2O2 (12.5 μM and 25 μM, concentrations equivalent to those measured in the supernatants of activated neutrophils and alveolar macrophages, respectively) caused a small (13%) decrease in the quantity of measurable LTB4 (P=0.051 and P<0.05 at 12.5 μM and 25 μM, respectively) that was inhibited by NAC (100 μM) but not by catalase (400 u ml−1).
  6. In conclusion, the anti-oxidant drug, NAC, increases LTB4 production by human neutrophils and alveolar macrophages, probably through the elimination of cell-derived H2O2. LTB4 undergoes a H2O2-dependent oxidation that is inhibited by NAC but this is unlikely to account fully for the increased levels of LTB4, suggesting that NAC may increase LTB4 production by blocking the H2O2-dependent inhibition of a synthetic enzyme, such as 5-lipoxygenase.
  相似文献   

5.
Recent studies have shown a correlation between 5-lipoxygenase (5-LO) pathway up-regulation and cardiovascular risk. Despite the existence of several assays for products of the 5-LO pathway, a reliable method for clinical determination of 5-LO activity remains to be established. In the present communication, we report conditions that allow measurement of 5-hydroxyeicosatetraenoic acid (5-HETE) and leukotriene B4 (LTB4) in peripheral blood mononuclear cells (PBMCs) isolated from the blood of atherosclerosis patients before and after stimulation by the calcium ionophore, A23187. LTB4, a potent mediator of inflammation-linked cardiovascular disease, was measured using an existing competitive enzyme immunoassay (EIA) kit after making specific methodological improvements that allowed PBMCs to be used in this format for the first time. LTB4 was also measured by LC/MS/MS along with 5-HETE, a direct by-product of the action of 5-LO on arachidonic acid and a molecule for which no commercial EIA kit exists. The LC/MS/MS assay was validated over a range of 0.025–25 ng/mL for LTB4 and 0.1–25 ng/mL for 5-HETE. The EIA method has a validated range covering 0.025–4 ng/mL. When both assays were applied to analyze LTB4 from stimulated PBMCs isolated from 25 subjects with various degrees of atherosclerosis, a high correlation was obtained (r = 0.9426, Pearson's correlation coefficient). A high correlation was also observed between the levels of LTB4 and 5-HETE measured by LC/MS/MS after ionophore stimulation (r = 0.9159). Details are presented for optimized sample collection, processing, storage, and analysis in accordance with the logistical demands of clinical analysis.  相似文献   

6.
We have demonstrated that magnolol suppressed thromboxane B2 (TXB2) and leukotriene B4 (LTB4) formation in A23187-stimulated rat neutrophils. Maximum inhibition was obtained with about 10 microM magnolol. Magnolol was more effective in the inhibition of cyclooxygenase (COX) activity than in the inhibition of 5-lipoxygenase (5-LO) activity as assessed by means of enzyme activity determination in vitro and COX and 5-LO metabolic capacity analyses in vivo. Magnolol alone stimulated cytosolic phospholipase A2 (cPLA2) phosphorylation and the translocation of 5-LO and cPLA2 to the membrane, and evoked arachidonic acid (AA) release. Recruitment of both 5-LO and cPLA2 to the membranes was suppressed by EGTA. Arachidonyl trifluoromethyl ketone (AACOCF3), a PLA2 inhibitor, bromoenol lactone (BEL), a Ca2+-independent PLA2 (iPLA2) inhibitor, and EGTA suppressed the magnolol-induced AA release. However, none of the follows affected magnolol-induced AA-release: 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole (SB203580), a p38 mitogen-activated protein kinase (MAPK) inhibitor, 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene (U0126), a MAPK kinase (MEK) inhibitor, or 2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)-maleimide (GF109203X), a protein kinase C (PKC) inhibitor. In addition, magnolol at 30 microM did not stimulate the p38 MAPK and extracellular signal-regulated kinase 2 (ERK2) enzyme activities. These results indicated that magnolol inhibits the formation of prostaglandins and leukotrienes in A23187-stimulated rat neutrophils, probably through a direct blockade of COX and 5-LO activities. The stimulatory effects of magnolol at high concentration on the membrane association of 5-LO and cPLA2 are attributable to the elevation of [Ca2+]i, and on the AA release is likely via activation of cPLA2 and iPLA2.  相似文献   

7.
ObjectiveTo evaluate the role of p38 mitogen-activated protein kinase (MAPK) on mice airway inflammation, mucus production and the possible cross-talk between p38 MAPK and matrix metalloproteinase-9 (MMP-9) in mucin protein synthesis.MethodsMice were exposed to 4.0 ppm of acrolein for 21 days with daily intraperitoneal injection of SB203580, a specific inhibitor of p38 MAPK. In control mice, sterile saline was administered instead. On days 7 and 21, mice were sacrificed to examine airway inflammation and mucus production by BALF cell counts, cytokine ELISA, and H&;E and AB-PAS staining. The mRNA and protein levels of Muc5ac, p38 MAPK and MMP-9 in the lung were determined by RT-PCR, immunohistochemistry and Western blotting analysis. MMP-9 activity was measured by gelatin zymography.ResultsBoth the numbers of inflammatory cells and mucus-secreting goblet cells were significantly increased in the airways of mice exposed to acrolein as compared to the control mice. Acrolein-increased phosphorylation of p38 MAPK was significantly reduced by SB203580. The airway inflammation and goblet cell hyperplasia after acrolein challenge were also attenuated by SB203580 administration. Moreover, SB203580 treatment decreased the acrolein-induced increase of Muc5ac and MMP-9 expression and MMP-9 activity in airway epithelium.ConclusionsThe results indicate an important role of p38 MAPK in acrolein-induced airway inflammation and mucus hypersecretion in mice. The cooperation of p38 and MMP-9 may contribute to the mucin overproduction after inflammatory challenge.  相似文献   

8.
Introduction: Leukotrienes (LTs) are lipid mediators produced from arachidonic acid with a broad variety of bioactivities in allergy and inflammation. The biosynthesis of LTs mainly involves 5-lipoxygenase (5-LO) and its 5-lipoxygenase-activating protein (FLAP), LTA4 hydrolase and LTC4 synthase that all may represent potential targets for LT biosynthesis inhibitors.

Areas covered: We introduce the LT biosynthetic pathway and its cellular regulation, the diverse biological actions of LTs and their receptors, and we briefly describe the pharmacological strategies for suppression of LT formation as well as the classes of current LT biosynthesis inhibitors. The main focus is placed on the comprehensive discussion of recently reported inhibitors of 5-LO, FLAP, LTA4 hydrolase and LTC4 synthase, based on literature search (PubMed and Thomson Innovation Patents Searches), covering 2012–2016.

Expert opinion: Although many new series of 5-LO inhibitors have been presented without patenting, essentially by academia, novel FLAP inhibitors (many patented) are most advanced in clinical development and are apparently the focus of pharmaceutical companies. Only few novel inhibitors of LTA4 hydrolase and LTC4 synthase were reported. Major issues in the development of LT synthesis inhibitors are related to loss of potency in biological relevant environment, poor pharmacokinetics, lack of oral efficacy, and side effects.  相似文献   


9.
Introduction: Leukotriene (LT) B4 is a powerful proinflammatory lipid mediator and triggers adherence to the endothelium, activates and recruits leukocytes to the site of injury. When formed in excess, LTB4 plays a pathogenic role and may sustain chronic inflammation in diseases such as asthma, rheumatoid arthritis, and inflammatory bowel disease. Recent investigations have also indicated that LTB4 is involved in cardiovascular diseases.

Areas covered: As the 5-lipoxygenase pathway involves several discrete, tightly coupled, enzymes, which convert the substrate, ‘step by step', into bioactive products, several different strategies have been used to target LTB4 as a means to treat inflammation. Here, we discuss recent findings regarding the development of selective enzyme inhibitors and antagonists for LTB4 receptors, as well as their application in preclinical and clinical studies.

Expert opinion: Components of the 5-lipoxygenase pathway have received considerable attention as candidate drug targets resulting in one new class of medications against asthma, that is, the antileukotrienes. However, efforts to specifically target LTB4 have not yet been fruitful in the clinical setting, in spite of very promising preclinical data. Recently, crystal structures along with hitherto unknown functions of key enzymes in the leukotriene cascade have emerged, offering new opportunities for drug development and, with time, pharmacological intervention in LTB4-mediated pathologies.  相似文献   

10.
Epidermal growth factor receptor (EGFR) signal transduction pathway has been reported to play a vital role in the biologic progression of several tumours and as targets for therapeutic intervention. We have investigated the role of EGFR in the thyroid PC Cl3 cells response to the chemo-therapeutic agent cisplatin. It was found that cisplatin provoked (1) the activation (phosphorylation) and internalization of EGFR, (2) the phosphorylation of mitogen-activated protein kinase (MAPK)/p38, (3) the activation of PKC-?, (4) the enhancement of matrix metalloproteinase-2 (MMP-2) expression and activity, (5) the generation of reactive oxygen species (ROS) and (6) the activation of the apoptotic intrinsic pathway. Inhibition or down regulation of EGFR reduced (1) the phosphorylation of MAPK/p38, (2) the cisplatin-provoked activation of PKC-?, and (3) the activation of caspase-7 and PARP cleavage and the overall cells sensitivity to cisplatin. PKC-? inhibition achieved by siRNA blocked MAPK/p38 activation and significantly increased the cell resistance to cisplatin. Finally, when the cisplatin-induced ROS generation was blocked by using NAD(P)H oxidase inhibitors, a decrease in cisplatin-induced MMP-2 enhancement, MAPK/p38 and EGFR activation, and caspase-7 proteolysis occurred.In conclusion, these findings supported a model in which cisplatin provokes an oxidant-induced MMP-2-dependent EGFR transactivation responsible for the induction of cell apoptosis, a process ascribable to the intracellular signalling of PKC-? and MAPK/p38.  相似文献   

11.
12.
5-Lipoxygenase (5-LO) catalyzes the first steps in the conversion of arachidonic acid (AA) into leukotrienes (LTs) that are mediators of inflammatory and allergic reactions. Recently, the 5-LO pathway has also been associated with atherosclerosis and osteoporosis. Thus, in addition to the classical applications including asthma and allergic disorders, LT synthesis inhibitors might be of interest for the treatment of cardiovascular diseases and osteoporosis. Recently, it has been shown that cellular 5-LO activity is regulated in a complex manner that can involve different signalling pathways. 5-LO can be activated by an increase in intracellular Ca2+ concentration, diacylglycerols, phosphorylation by MAPKAP kinase-2 and ERK. Previous work could demonstrate that cellular 5-LO activity is repressed in a protein kinase A-dependent manner and by glutathione peroxidases. This comment focuses on the impact of these stimulatory and inhibitory pathways on the efficacy of 5-LO inhibitors and suggests additional criteria for the development of this class of compounds.  相似文献   

13.
Cyclooxygenases (COXs) are the key enzymes in the biosynthesis of prostanoids. COX-1 is a constitutive enzyme while the expression of COX-2 is highly stimulated in the event of inflammatory processes, leading to the production of large amounts of prostaglandins (PGs), in particular PGE2 and PGI2, which are pro-inflammatory mediators.Lipoxygenases (LOXs) are enzymes that produce hydroxy acids and leukotrienes (LTs). 5-LOX metabolizes arachidonic acid to yield, among other products, LTB4, a potent chemoattractant mediator of inflammation.The aim of the present work was to evaluate the anti-inflammatory potential of 2-styrylchromones (2-SC), a chemical family of oxygen heterocyclic compounds, vinylogues of flavones (2-phenylchromones), by studying their COX-1 and COX-2 inhibitory capacity as well as their effects on the LTB4 production by stimulated human polymorphonuclear leukocytes (PMNL).Some of the tested 2-SC were able to inhibit both COX-1 activity and LTB4 production which makes them dual inhibitors of the COX and 5-LOX pathways. The most effective compounds in this study were those having structural moieties with proved antioxidant activity (3′,4′-catechol and 4′-phenol substituted B-rings).This type of compounds may exhibit anti-inflammatory activity with a wider spectrum than that of classical non-steroidal anti-inflammatory drugs (NSAIDs) by inhibiting 5-LOX product-mediated inflammatory reactions, towards which NSAIDs are ineffective.  相似文献   

14.
During our on-going studies to identify bioactive compounds in medicinal herbs, we found that saucerneol F (SF), a naturally occurring sesquilignan isolated from Saururus chinensis (S. chinensis), showed in vitro anti-inflammatory activity. In this study, we examined the effects of SF on the generation of 5-lipoxygenase (5-LO) dependent leukotriene C4 (LTC4), cyclooxygenase-2 (COX-2) dependent prostaglandin D2 (PGD2), and on phospholipase Cγ1 (PLCγ1)-mediated degranulation in SCF-induced mouse bone marrow-derived mast cells (BMMCs). SF inhibited eicosanoid (PGD2 and LTC4) generation and degranulation dose-dependently. To identify the molecular mechanisms underlying the inhibition of eicosanoid generation and degranulation by SF, we examined the effects of SF on the phosphorylation of PLCγ1, intracellular Ca2+ influx, the translocation of cytosolic phospholipase A2 (cPLA2) and 5-LO, and on the phosphorylation of MAP kinases (MAPKs). SF was found to reduce intracellular Ca2+ influx by inhibiting PLCγ1 phosphorylation and suppressing the nuclear translocations of cPLA2 and 5-LO via the phosphorylations of MAPKs, including extracellular signal-regulated protein kinase-1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Taken together, these results suggest that SF may be useful for regulating mast cell-mediated inflammatory responses by inhibiting degranulation and eicosanoid generation.  相似文献   

15.
几种抗炎药对白三烯B4生物合成的影响   总被引:1,自引:0,他引:1  
李宁元  朱秀媛 《药学学报》1988,23(2):104-107
白三烯B4为花生四烯酸5-脂氧酶代谢产物,是炎症反应中的重要介质。目前抑制白三烯B4生物合成的药物尚不多见。本文建立了测定白细胞来源白三烯B4的反相高效液相色谱法,并初步探讨了几种抗炎药对白三烯B4生物合成的影响。结果表明阿斯匹林、消炎痛、炎痛喜康、氢化可的松及麝香第一色带对白三烯B4生物合成几无影响,而氟灭酸可明显抑制白三烯B4生成,提示它可能是5-脂氧酶抑制剂。  相似文献   

16.
5-Lipoxygenase (5-LO) is the key enzyme in the biosynthesis of leukotrienes (LTs) that exert a large number of different biological activities mediated by specific G-protein-coupled receptors. LTB4 is a typical pro-inflammatory mediator that recruits and activates leukocytes, whereas the cysteinyl-containing LTC4, D4 and E4 cause vascular permeability and smooth muscle contraction. Recent studies have implicated LTs and also other 5-LO products in bone metabolism, and the cardiovascular system, as well as in proliferation and (tumour) cell survival. Therefore, pharmacological intervention with 5-LO product synthesis represents a reasonable strategy for the treatment of a number of disease states, including allergic and inflammatory disorders, atherosclerosis and other cardiovascular diseases, osteoporosis and certain types of cancer. This review summarises the pharmacological concepts in 5-LO inhibition and focuses on novel pharmacological approaches in the devel-opment of drugs designed to intervene with dis-eases related to 5-LO prod-ucts.  相似文献   

17.
18.
Background: Leukotriene A4 hydrolase (LTA4H) is a ubiquitously distributed 69-kDa zinc-containing cytosolic enzyme with both hydrolase and aminopeptidase activity. As a hydrolase, LTA4H stereospecifically catalyzes the transformation of the unstable epoxide LTA4 to the diol leukotriene B4 (LTB4), a potent chemoattractant and activator of neutrophils and a chemoattractant of eosinophils, macrophages, mast cells, T cells, dendritic cells, smooth muscle cells and keratinocytes. Inhibiting the formation of LTB4 is expected to be beneficial in the treatment of inflammatory diseases such as inflammatory bowel disease, asthma and atherosclerosis. Objective: The focus of this review will be on patent applications/patents containing LTA4H inhibitors that were published between 1996 and March 2008 from four different companies. The documents reviewed are presented in a tabular manner. Method: The first part of this review focuses on the primary literature supporting LTA4H as a potential target. The second part covers the patent literature organized by applicant identified during the prescribed period. Conclusion: Activity towards identifying small molecule inhibitors of LTA4H has escalated in the last few years in line with important scientific and clinical developments involving the leukotriene pathway. One inhibitor from deCODE, DG-051, is reported to be in clinical trials for myocardial infarction and future reports of clinical efficacy will undoubtedly stimulate further work in the field by others.  相似文献   

19.

BACKGROUND AND PURPOSE

A2B adenosine receptors protect against ischaemia/reperfusion injury by activating survival kinases including extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3K). However, the underlying mechanism(s) and signalling pathway(s) remain undefined.

EXPERIMENTAL APPROACH

HEK 293 cells stably transfected with human A2B adenosine receptors (HEK-A2B) and isolated adult rabbit cardiomyocytes were used to assay phosphorylation of ERK by Western blot and cation flux through cAMP-gated channels by patch clamp methods. Generation of reactive oxygen species (ROS) by mitochondria was measured with a fluorescent dye.

KEY RESULTS

In HEK-A2B cells, the selective A2B receptor agonist Bay 60-6583 (Bay 60) increased ERK phosphorylation and cAMP levels, detected by current through cAMP-gated ion channels. However, increased cAMP or its downstream target protein kinase A was not involved in ERK phosphorylation. Pertussis toxin (PTX) blocked ERK phosphorylation, suggesting receptor coupling to Gi or Go proteins. Phosphorylation was also blocked by inhibition of PI3K (with wortmannin) or of ERK kinase (MEK1/2, with PD 98059) but not by inhibition of NO synthase (NOS). In cardiomyocytes, Bay 60 did not affect cAMP levels but did block the increased superoxide generation induced by rotenone, a mitochondrial complex I inhibitor. This effect of Bay 60 was inhibited by PD 98059, wortmannin or PTX. Inhibition of NOS blocked superoxide production because NOS is downstream of ERK.

CONCLUSION AND IMPLICATIONS

Activation of A2B adenosine receptors reduced superoxide generation from mitochondrial complex I through Gi/o, ERK, PI3K, and NOS, all of which have been implicated in ischaemic preconditioning.  相似文献   

20.
In spite of their pathophysiological importance in neuro-inflammatory diseases, little is known about the signal transduction pathways that lead to the induction of matrix metalloproteinases (MMPs) in the central nervous system. We reported previously that lipopolysaccharide (LPS) induced MMP-9 expression through ERK1/2 pathway in rat primary astrocytes (Glia 41:15-24, 2003). Here, we investigated the role of other MAPK pathways, including p38 and JNK/SAPK, on the regulation of MMP-9 expression in LPS-stimulated rat primary astrocytes. LPS activated both p38 and JNK in astrocytes. Treatment with a specific p38 MAPK inhibitor SB203580, but not JNK inhibitor SP600125, increased the LPS-stimulated MMP-9 expression in a concentration-dependent manner. Anti-inflammatory cytokines, including IFN-gamma and IL-4, activated p38 MAPK and decreased MMP-9 production in LPS-stimulated astrocytes. When p38 MAPK activation was blocked by SB203580, the inhibitory effects of these cytokines on MMP-9 induction were abolished. Finally, direct injection of SB203580 into the lateral ventricle of rat brain increased the LPS-induced MMP-9 activity in cerebral cortex. Altogether, these results suggest that p38 activation down-regulates the inflammatory stimulation-induced overexpression of MMP-9, both in primary astrocytes and in cerebral cortex. The elaborate interplay between ERK1/2 and p38 pathways provides a more sophisticated mechanism for regulating MMP-9 activity in neuroinflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号