首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, chitosan-coated alginate microspheres were prepared by the ionic complexation of alginate and chitosan biopolymers to use in embolization and/or chemoembolization studies. Biopolymeric microspheres were prepared by the ionic gelation technique of alginate with a suitable divalent cation (i.e. CaCl2) in a suspension medium composed of mineral oil and petroleum ether including emulsifier (i.e. Tween-80) and then obtained microspheres were coated with chitosan in an aqueous chitosan solution while the medium was magnetically stirred. The obtained microspheres are in the size range of 100-400 microm and they can be prepared as required by changing the preparation conditions (i.e. stirring rate, concentration of biopolymers, molecular weight and concentration of chitosan, etc.). In the in vivo studies, New Zealand rabbits were used as the test animals. Both complete and partial embolization of the kidney were achieved by using the microspheres. The renal angiograms obtained before/after embolization and the histopathological observations showed the feasibility of the chitosan-coated alginate microspheres as an alternative embolization and/or chemoembolization agent.  相似文献   

2.
Mitomycin-C loaded and chitosan-coated alginate microspheres were prepared for use in chemoembolization studies. In this respect, first alginate microspheres were prepared by using a spraying method using an extrusion device with a small orifice and following suspension cross-linking in an oil phase. Chitosan-coating onto the alginate microspheres was achieved by polyionic complex formation between alginate and chitosan. CaCl2 was used as a cross-linker for alginate microspheres. The obtained chitosan-coated alginate microspheres were spherical shaped and ~100–400?µm average size. The microspheres were evaluated based on their swellability and the swelling ratio was changed between 50–280%. CaCl2 concentration, stirring rate, chitosan molecular weight, chitosan concentration and time for coating with chitosan were selected as the effective parameters on microsphere size and swelling ratio. Equilibrium swellings were achieved in ~30?min. On the other hand, chitosan molecular weight, chitosan concentration and time for coating with chitosan were found as the most effective parameters on both drug loading ratio and release studies. Maximum drug loading ratio of 65% was achieved with high molecular weight (HMW) chitosan, highest chitosan concentration (i.e. 1.0% v/v) and shortest time for coating with chitosan (i.e. 1?h) values.  相似文献   

3.
Mitomycin-C loaded and chitosan-coated alginate microspheres were prepared for use in chemoembolization studies. In this respect, first alginate microspheres were prepared by using a spraying method using an extrusion device with a small orifice and following suspension cross-linking in an oil phase. Chitosan-coating onto the alginate microspheres was achieved by polyionic complex formation between alginate and chitosan. CaCl(2) was used as a cross-linker for alginate microspheres. The obtained chitosan-coated alginate microspheres were spherical shaped and approximately 100-400 microm average size. The microspheres were evaluated based on their swellability and the swelling ratio was changed between 50-280%. CaCl(2) concentration, stirring rate, chitosan molecular weight, chitosan concentration and time for coating with chitosan were selected as the effective parameters on microsphere size and swelling ratio. Equilibrium swellings were achieved in approximately 30 min. On the other hand, chitosan molecular weight, chitosan concentration and time for coating with chitosan were found as the most effective parameters on both drug loading ratio and release studies. Maximum drug loading ratio of 65% was achieved with high molecular weight (HMW) chitosan, highest chitosan concentration (i.e. 1.0% v/v) and shortest time for coating with chitosan (i.e. 1 h) values.  相似文献   

4.
5-fluorouracil loaded chitosan microspheres for chemoembolization   总被引:5,自引:0,他引:5  
In this study, chitosan microspheres were prepared by a suspension cross-linking technique. A petroleum ether/mineral oil mixture was used as the suspension medium which includes an emulsifier, e.g. Tween-80. Glutaraldehyde was used as the cross-linker. 5-Fluorouracil was incorporated in the matrix for the possible use of the microspheres in chemoembolization. The size and size distribution of the chitosan microspheres varied in the size range of 100-200 microns, by changing the emulsifier concentration, stirring rate, chitosan/solvent ratio and drug/chitosan solution ratio. In summary, the size and size distribution of the microspheres decreased when the emulsifier concentration and stirring rate were increased. Smaller microspheres with narrower size distributions were obtained when the chitosan/solvent ratio and drug/chitosan ratio were lower. It was possible to load the chitosan microspheres with 5-FU to a concentration of 10.4 mg 5-FU/g chitosan. Around 60% of the loaded drug was released within the first 24 h, then the release rate became much slower.  相似文献   

5.
In this study, chitosan microspheres were prepared by a suspension crosslinking technique. A petroleum ether/mineral oil mixture was used as the suspension medium which includes an emulsifier, e.g. Tween-80. Glutaraldehyde was used as the cross-linker. 5-Fluorouracil was incorporated in the matrix for the possible use of the microspheres in chemoembolization. The size andsize distributionof thechitosanmicrospheres variedinthesizerangeof 100-200mum, by changing the emulsifier concentration, stirring rate, chitosan/ solvent ratio and drug/chitosan solution ratio. In summary, the size and size distribution of the microspheres decreased when the emulsifier concentration and stirring rate were increased. Smaller microspheres with narrower size distributions were obtained when the chitosan/solvent ratio and drug/chitosan ratiowerelower. Itwas possibletoload thechitosanmicrospheres with 5-FU to a concentration of 10.4mg 5-FU/g chitosan. Around 60%of the loaded drug was released within the first 24h, then the release rate became much slower.  相似文献   

6.
To prevent a rapid drug release from alginate microspheres in simulated intestinal media, alginate microspheres were coated or blended with polymers. Three polymers were selected and evaluated such as HPMC, Eudragit RS 30D and chitosan, as both coating materials and additive polymers for controlling the drug release. This study focused on the release characteristics of polymer-coated and blended alginate microspheres, varying the type of polymer and its concentration. The alginate microspheres were prepared by dropping the mixture of drug and sodium alginate into CaCl(2) solution using a spray-gun. Polymer-coated microspheres were prepared by adding alginate microspheres into polymer solution with mild stirring. Polymer-blended microspheres were prepared by dropping the mixture of drug, sodium alginate and additive polymer with plasticizer into CaCl(2) solution. In vitro release test was carried out to investigate the release profiles in 500 ml of phosphate buffered saline (PBS, pH 7.4). As the amount of polymer in sodium alginate or coating solution increase, the drug release generally decreased. HPMC-blended microspheres swelled but withstood the disintegration, showing an ideal linear release profiles. Chitosan-coated microspheres showed smooth and round surface and extended the release of drug. In comparison with chitosan-coated microspheres, HPMC-blended alginate microspheres can be easily made and used for controlled drug delivery systems due to convenient process and controlled drug release.  相似文献   

7.
Alginate microspheres prepared by emulsification/internal gelation were chosen as carriers for a model protein, hemoglobin (Hb). Reinforced chitosan-coated microspheres were obtained by an uninterrupted method, in order to simplify the coating process, minimize protein losses during production and to avoid Hb escape under acidic conditions. Microspheres recovery was evaluated as well as its morphology by determination of Hb encapsulation efficiency and microscopic observation, respectively. The formation of chitosan membrane made of it interaction with alginate was assessed by DSC (differential scanning calorimetry) and FT-IR (Fourier-transform infrared spectrometry) studies. Spherical uncoated microspheres with a mean diameter of 20 microm and encapsulation efficiency above 89% were obtained. Coated microspheres provided similar encapsulation efficiency but a higher mean diameter was obtained due to microspheres clumping during the coating step. Protein loss occurred mainly during emulsification rather than recovery. FT-IR and DSC together indicated electrostatic interactions between alginate carboxylate and chitosan ammonium groups as the main forces for complex formation. Hb release from microspheres showed a pH-dependent profile and was affected by chitosan coating. Under simulated gastric conditions, a total Hb burst release from uncoated microspheres was decreased with one-stage and two-stage chitosan coatings (68% and 28%, respectively). At pH 6.8, the Hb release from coated microspheres was fast but incomplete. These results suggest an optimization of the coating method to protect Hb under acidic conditions and to permit a complete but sustained release of Hb.  相似文献   

8.
Mu B  Liu P  Li X  Du P  Dong Y  Wang Y 《Molecular pharmaceutics》2012,9(1):91-101
pH/ionic strength/temperature multiresponsive hollow microspheres were successfully prepared by the Ce(IV) initiated grafting polymerization of N-isopropylacrylamide (NIPAm) onto the multilayered polyelectrolyte shells encapsulating the polystyrene sulfonate (PSS) microsphere templates fabricated by the layer-by-layer assembly of chitosan (CS) and alginate (SAL), after etching the templates by dialysis. The hollow structure of the obtained multiresponsive hollow microspheres was characterized by transmission electron microscopy (TEM), which indicated that the inner diameter of the hollow microspheres was about 200 nm. The environmental responsive properties of the multiresponsive hollow microspheres were characterized with dynamic light scattering (DLS) in an aqueous system. The introduction of poly(N-isopropylacrylamide) (PNIPAm) brushes onto the pH/ionic strength dual-responsive hollow microspheres achieved temperature-responsive characteristics. It also could prevent flocculation among the obtained multiresponsive hollow microspheres in a solution with higher salt concentration. Their controlled release of drug molecules (a model hydrophobic drug, dipyridamole (DIP)) was also investigated.  相似文献   

9.
Monodisperse Ca-alginate microspheres were prepared using the membrane emulsification method. Three ionic types of drugs (anionic, cationic and non-ionic) were incorporated into the microspheres, and the effects of sodium alginate concentration and the pressure applied during the dispersing process on the properties of the microspheres were examined. Monodisperse microspheres were obtained when the concentration of alginate solution was 2 wt% and the pressure applied was 0.4 x 10(5) Pa. The mean size of microspheres was approximately 4 microm. Lidocaine x HCl (cationic), sodium salicylate (anionic) and 4-acetamidophenol (non-ionic) were selected as ionic model drugs and included in the alginate microspheres. Lidocaine x HCl (cationic drug) release was more retarded than that of the anionic drug, because of the electrostatic attraction between the negative charge of the ionized carboxyl group in the alginate chain and the positive charge of the cationic drug. In acidic release medium, a slow release was observed due to the low swelling characteristic and the increased viscosity of alginate, regardless of ionic type of drug.  相似文献   

10.
Microparticle protein delivery systems based on calcium alginate were fabricated using a very convenient method, i.e. directly shredding the protein-loaded calcium alginate beads into microparticles in a commercial food processor for 3 min. Bovine serum albumin (BSA) as a model protein was encapsulated in the calcium alginate microparticles. The obtained protein-loaded microparticles were then coated with chitosan. This fabrication method offered high encapsulation efficiency and a high particle yield. Compared with beads, the microparticles exhibited a faster release rate in the initial release stage. By comparing the release profiles of uncoated beads/microparticles and chitosan-coated beads/microparticles, it was found that the releases from chitosan-coated beads/microparticles were slower. To examine whether the loaded protein denatured during the microparticle fabrication, trypsin was encapsulated in the calcium alginate microparticles and the bioactivity of trypsin released from the microparticles was measured.  相似文献   

11.
Chitosan-coated alginate microspheres containing a lipophilic marker dissolved in an edible oil, were prepared by emulsification/internal gelation and the potential use as an oral controlled release system investigated. Microsphere formation involved dispersing a lipophilic marker dissolved in soybean oil into an alginate solution containing insoluble calcium carbonate microcrystals. The dispersion was then emulsified in silicone oil to form an O/W/O multiple phase emulsion. Addition of an oil soluble acid released calcium from carbonate complex for gelation of the alginate. Chitosan was then applied as a membrane coat to increase the mechanical strength and stabilize the microspheres in simulated intestinal media. Parameters studied included encapsulation yield, alginate concentration, chitosan molecular weight and membrane formation time. Mean diameters ranging from 500 to 800 micron and encapsulation yields ranging from 60 to 80% were obtained. Minimal marker release was observed under simulated gastric conditions, and rapid release was triggered by transfer into simulated intestinal fluid. Higher overall levels of release were obtained with uncoated microspheres, possibly due to binding of marker to the chitosan membrane coat. However the slower rate of release from coated microspheres was felt better suited as a delivery vehicle for oil soluble drugs.  相似文献   

12.
Chitosan beads (CBs) incorporating Ca-alginate microspheres (CAMs), containing a drug, were prepared as an oral sustained delivery system. Stable and monodisperse Ca-alginate microspheres loaded with drug were obtained by a membrane emulsification method. The Ca-alginate microspheres were encapsulated in chitosan beads by the ionotropic gelation method with a polyelectrolyte complex reaction between two oppositely charged polyions. The surface and internal characteristics of the beads were improved by ionic cross-linking in tripolyphosphate (TPP) solution adjusted to pH 5.0. The release experiments were performed using lidocaine·HCl (cationic drug) and sodium salicylate (anionic drug) as model drugs. Initial release of drugs depended on the degree of swelling. Ca-alginate microspheres encapsulated in chitosan beads were superior to both drug-loaded CBs and CAMs beads for sustained release because they had a three-layer composition; a calcium alginate core bounded by an inter-phasic chitosan-alginate membrane, which itself was surrounded by a layer of chitosan-TPP.  相似文献   

13.
Chitosan beads (CBs) incorporating Ca-alginate microspheres (CAMs), containing a drug, were prepared as an oral sustained delivery system. Stable and monodisperse Ca-alginate microspheres loaded with drug were obtained by a membrane emulsification method. The Ca-alginate microspheres were encapsulated in chitosan beads by the ionotropic gelation method with a polyelectrolyte complex reaction between two oppositely charged polyions. The surface and internal characteristics of the beads were improved by ionic cross-linking in tripolyphosphate (TPP) solution adjusted to pH 5.0. The release experiments were performed using lidocaine.HCl (cationic drug) and sodium salicylate (anionic drug) as model drugs. Initial release of drugs depended on the degree of swelling. Ca-alginate microspheres encapsulated in chitosan beads were superior to both drug-loaded CBs and CAMs beads for sustained release because they had a three-layer composition; a calcium alginate core bounded by an inter-phasic chitosan-alginate membrane, which itself was surrounded by a layer of chitosan-TPP.  相似文献   

14.
Alginate based microparticle drug delivery systems were prepared for the sustained release of antineoplastic drugs. Two drugs, 5-fluorouracil (5-FU) and tegafur, were encapsulated into the microparticles. The drug loaded microparticles were fabricated using a very convenient method under very mild conditions, i.e., directly shredding the drug loaded beads into microparticles in a commercial food processor. The mean sizes of the obtained microparticles were between 100 and 200 μm. To effectively sustain the drug release, alginate microparticles were reinforced by chitosan during gelation. The drug release from the chitosan-reinforced alginate microparticles was obviously slower than that from the unreinforced microparticles. The effect of the reinforcement conditions on the drug release property of the microparticles was studied, and the optimized concentration of chitosan solution for reinforcement was identified. The effects of drug feeding concentration and pH value of the release medium on the drug release were investigated.  相似文献   

15.
The mucoadhesive properties of chitosan and chitosan microspheres were evaluated by studying the interaction between mucin and chitosan in aqueous solution by turbidimetric measurements and the measurement of mucin adsorbed on the microspheres. A strong interaction between chitosan microspheres and mucin was detected. Adsorption studies were carried out for the adsorption of mucin to chitosan microspheres with different crosslinking levels. The adsorption of type III mucin (1% sialic acid content), to chitosan microspheres followed Freundlich or Langmuir adsorption isotherms. When the contents of sialic acid was increased (i.e. type I-S mucin, 12% sialic acid content), the adsorption type followed more closely an electrostatic attraction type of isotherm. The heat of the adsorption was found to be 13–23 kJ/mol. A salt-bridge effect has been proposed for the interaction of the positively charged mucoadhesive chitosan microspheres with the negatively charged mucus glycoprotein. The extent of mucus adsorption was proportional to the absolute values of the positive zeta potential of chitosan microspheres and negative `zeta potential' of mucus glycoprotein. Factors leading to a reduction or a reversal of these absolute values (e.g. different crosslinking levels of chitosan microspheres, different types of mucin, different pH, or ionic strength of the medium used) led to a reduction in the amount adsorbed. The extent of this reduction depended upon the decreasing extent of the repective zeta potentials. Biological studies showed that chitosan microspheres were retained by a biological tissue; rat small intestine.  相似文献   

16.
目的对多柔比星海藻酸钠微球(DOX-AM)进行体内肝动脉栓塞后药代动力学的研究。方法以中华小型猪为实验动物,动脉造影后超选择至肝动脉分支,实验组行DOX-AM肝动脉化疗栓塞,两个对照组分别行碘油多柔比星(DOX-lipiodol)肝动脉化疗栓塞和单纯多柔比星(DOX)肝动脉灌注;定时取实验动物的外周静脉血,采用高效液相色谱法(HLPC)测定其血药浓度并进行药代动力学方面的相关统计处理。栓塞前后进行影像学检查。结果DOX-AM与单纯DOX溶液灌注和DOX-lipiodol栓塞相比,在血浆半衰期﹑药时曲线下面积、最大血药浓度和平均滞留时间等方面均呈现明显的差异性;肝组织学检查证实DOX-AM栓塞后阻塞在血管内并停留一定时间。数字减影血管造影(DSA)和计算机断层扫描(CT)检查显示栓塞效果可靠,组织学检查显示对肝脏的副作用按碘油多柔比星栓塞、多柔比星海藻酸钠微球栓塞及单纯DOX肝动脉灌注的顺序下降。结论DOX-AM在肝脏行动脉栓塞后,具有明显的缓释作用,可以显著延长药物在体内的停留时间,对肝脏的副作用小于碘油多柔比星肝动脉栓塞。  相似文献   

17.
Microparticulate delivery systems designed for the nasal administration of an antiemetic drug, metoclopramide hydrochloride, were prepared. Microspheres composed of sodium alginate, chitosan hydrochloride, or both, were obtained using a spray-drying method; some batches of drug-free microparticles were prepared as a comparison. The morphology, in-vitro swelling behaviour, mucoadhesive properties and drug release from microparticles were evaluated. Ex-vivo drug permeation tests were carried out using sheep nasal mucosa; permeation test of the drug solution was performed as comparison. During ex-vivo permeation tests, transmission electron microscopy (TEM) analyses were carried out on the nasal mucosa to study the morphological changes of epithelial cells and tight junctions, while the change in microsphere morphology was examined using photostereo microscopy (PM). Spray-dried microparticles had a mean diameter (d(vs)) in the range of about 3-10 microm. They showed good in-vitro mucoadhesive properties. In-vitro release profiles and swelling behaviour depended on their composition: the drug release occurred in 1-3 h. Ex-vivo studies showed that drug permeation through the mucosa from microparticles based on chitosan was higher than from those consisting of alginate alone. This can be related to the penetration enhancing properties of chitosan. Complexation of chitosan with alginate led to a control of the drug release. Microscopy observation of microspheres during the permeation tests revealed that microparticles swelled and gelled, maintaining their shape. TEM analyses of the mucosa after exposure to the microparticles consisting of alginate/chitosan showed opened tight junctions. This preliminary study shows that alginate/chitosan spray-dried microspheres have promising properties for use as mucoadhesive nasal carriers of an antiemetic drug.  相似文献   

18.
The aim of this study is to develop an effective growth factor releasing scaffold-microsphere system for promoting periodontal tissue engineering. Bone morphogenetic protein-6 (BMP-6)-loaded alginate microspheres in narrow size distribution were produced by optimising electrospraying conditions. The addition of these microspheres to chitosan gels produced a novel scaffold in which not only the pore sizes and interconnectivity were preserved, but also a controlled release vehicle was generated. Loading capacity was adjusted as 50?ng or 100?ng BMP-6 for each scaffold and the controlled release behaviour of BMP-6 from chitosan scaffolds was observed during seven days. Cell culture studies were carried out with rat mesenchymal stem cells derived from bone marrow in three groups; chitosan scaffolds, chitosan scaffolds containing BMP-6-loaded alginate microspheres and chitosan scaffolds with free BMP-6 in culture medium. Results showed that controlled delivery of BMP-6 from alginate microspheres has a significant effect on osteogenic differentiation.  相似文献   

19.
Chitosan microspheres were prepared by ionic gelation process with sodium sulfate for nasal vaccine delivery. Bordetella Bronchiseptica Dermonecrotoxin (BBD) as a major virulence factor of a causative agent of atrophic rhinitis (AR) was loaded to the chitosan microspheres for vaccination. Morphology of BBD-loaded chitosan microspheres was observed as spherical shapes. The average particle sizes of the BBD-loaded chitosan microspheres were about 2.69 microm. More BBD was released with an increase of molecular weight of chitosan and with an increase of medium pH in vitro due to weaker intermolecular interaction between chitosan and BBD. Tumor necrosis factor-alpha (TNFalpha) and nitric oxide (NO) from RAW264.7 cells stimulated with BBD-loaded chitosan microspheres were gradually secreted, suggesting that released BBD from chitosan microspheres had immune stimulating activity of AR vaccine.  相似文献   

20.
目的 研究壳聚糖和海藻酸钠两种多糖包覆胰岛素脂质体的小鼠po降血糖作用。方法 用逆相蒸发法制备胰岛素脂质体;用透射电镜和激光粒度仪测定它们的形态和粒径;用HPLC法和超速离心法测定包封率;用胃蛋白酶和胰蛋白酶溶液试验多糖包覆脂质体对胰岛素的保护作用;用酶-苯酚法测定小鼠po多糖包覆胰岛素脂质体后降血糖作用。结果小鼠po 0.1%壳聚糖和0.1%海藻酸钠包覆的胰岛素脂质体具有较好的降血糖作用。结论壳聚糖或海藻酸钠包覆的脂质体能减少胃蛋白酶或胰蛋白酶对胰岛素的降解并促进胰岛素po吸收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号