首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
Box-Behnken效应面法优化姜黄素纳米结构脂质载体处方   总被引:1,自引:0,他引:1  
目的采用Box-Behnken效应面法优化处方,制备姜黄素纳米结构脂质载体,并考察其理化性质。方法采用薄膜超声法制备载药纳米结构脂质载体,分别以药物质量浓度(X1)、总脂质质量浓度(X2)和混合乳化剂质量浓度(X3)为考察对象,以包封率(Y1)、粒径(Y2)为评价指标,利用三因素三水平Box-Behnken效应面设计法筛选载药纳米结构脂质载体的最佳处方。采用微柱离心法测定制剂的包封率,透射电镜观察其外观形态,动态光衍射法测定其粒径及Zeta,差示扫描量热法确证姜黄素在载体中的分散状态。结果最优处方制备的载药纳米结构脂质载体外形呈圆形或椭球形,粒径分布均匀,平均粒径为(58.37±2.60)nm,Zeta电位为-(22.6±0.88)mV,包封率为(93.48±0.86)%,DSC结果表明药物以非结晶状分散于纳米结构脂质载体中。结论采用Box-Behnken效应面法优化姜黄素纳米结构脂质载体处方是可行的。  相似文献   

2.
目的 采用Box-Behnken效应面法筛选姜黄素正负离子固体脂质纳米粒的最优处方.方法 采用乳化蒸发-低温固化法制备姜黄素的固体脂质纳米粒,以固体脂质的质量、卵磷脂的质量和混合表面活性剂为考察对象,以包封率和脂质载药量为考察指标,利用3因素3水平Box-Behnken效应面设计法筛选姜黄素固体脂质纳米粒的最优处方.结果 按最优处方制备固体脂质纳米粒的包封率为94.20% ±2.55%、脂质载药量为3.49%±0.11%,平均粒径为194.9 ±12.0 nm,Zeta电位为-28.15 ±2.72 mV.结论 采用Box-Behnken效应面法优化姜黄素正负固体脂质纳米粒的处方是有效、可行的.  相似文献   

3.
目的采用Box-Behnken效应面优化姜黄素长循环纳米结构脂质载体(mPEG2000-Cur-NLC)处方,并考察其理化性质。方法采用薄膜-超声法制备mPEG2000-Cur-NLC,以粒径、包封率和载药量为评价指标,以混合脂质的用量、乳化剂的用量和脂药质量比为考察对象,采用Box-Behnken效应面法筛选其最佳处方,并考察其粒径、包封率、zeta电位及体外释放。结果最优处方为混合脂质用量为质量分数2.5%、乳化剂的用量质量分数3.5%和脂药质量比40∶1,按最优处方制备的m PEG2000-Cur-NLC粒径为(135.33±2.52)nm、包封率为(96.70±0.146)%、载药量为(2.41±0.587)%,体外释放72h药物累积释放量为58.37%,呈缓释释放,Weibull方程拟合结果最好。结论 m PEG2000-Cur-NLC采用Box-Behnken效应面法优化是可行的,体外缓释效果良好。  相似文献   

4.
目的 优化石杉碱甲二元醇质体的处方,并对其理化性质进行考察.方法 采用注入法制备石杉碱甲二元醇质体.以卵磷脂含量(X1)、无水乙醇含量(X2)、混合醇含量(X3)为考察因素,以包封率(Y1)与平均粒径(Y2)为评价指标,通过星点设计-响应面法优化醇质体处方.并考察醇质体的粒径、电位等理化性质.结果 优选的处方为卵磷脂含...  相似文献   

5.
目的以牛蒡苷(arctiin,AC)为模拟药,通过Box-Behnken效应面法优化制备AC-pH敏感脂质体。方法采用薄膜分散法制备脂质体,分别以磷脂-胆固醇比(X1)、磷脂-药质量比(X2)、pH敏感材料含量(X3)为考察对象,以包封率(Y1)、载药量(Y2)和粒径(Y3)为评价指标,利用三因素三水平Box-Behnken效应面设计法筛选牛蒡苷pH敏感脂质体的最佳处方;并考察该制剂的稳定性。结果牛蒡苷pH敏感脂质体的平均包封率为(93.25±1.5)%;平均载药量(94.10±1.8)%;平均粒径为(208.55±2.8)nm。室温下,AC脂质体为乳白色细腻乳液,对室温条件稳定,但对光照和60℃不稳定。结论采用Box-Behnken实验设计法优化牛蒡苷pH敏感脂质体处方可得到较高包封率、稳定性优良且pH敏感性良好的产品,并为今后进行体内剂型研究奠定基础。  相似文献   

6.
目的采用Box-Behnken效应面法筛选最佳处方,制备盐酸小檗碱脂质体。方法采用薄膜分散-p H梯度法制备脂质体,分别以磷脂与胆固醇质量比、脂药质量比、外水相p H值、孵化温度为考察对象,以包封率、粒径和载药量为评价指标,采用4因素3水平Box-Behnken效应面设计法筛选盐酸小檗碱脂质体的最佳处方。采用阳离子交换树脂微柱离心法测定包封率,动态激光散射法测定脂质体的粒径,并采用透射电镜观察制得的脂质体形态。结果最优处方工艺条件为磷脂与胆固醇质量比为3.38∶1,脂药质量比为22∶1,外水相p H为6.88,孵化温度为59℃。以最优处方制备的盐酸小檗碱脂质体平均粒径、包封率、载药量与预测值偏差较小。结论采用Box-Behnken效应面法优化盐酸小檗碱脂质体工艺处方是可行的。  相似文献   

7.
Box-Behnken效应面法优化长春西汀长循环脂质体处方   总被引:5,自引:2,他引:3  
目的通过优化手段筛选最佳处方,制备长春西汀长循环脂质体。方法采用薄膜分散法制备长循环脂质体,分别以磷脂质量浓度(1ρ)、Tween80质量浓度(ρ2)、磷脂-药质量比(ms∶md)为考察对象,以包封率(Y1)、载药量(Y2)和粒径(d)为评价指标,利用三因素三水平Box-Behnken效应面设计法筛选长循环脂质体的最佳处方;透射电子显微镜考察其形态与粒径。结果长循环脂质体的包封率为85.9%;载药量18.5 mg.g-1;粒径为213.4 nm,与理论值偏差均小于10%。结论长春西汀长循环脂质体采用Box-Behnken实验设计法优化是可行的。  相似文献   

8.
采用星点设计-效应面法优化及制备阿霉素白蛋白纳米粒   总被引:1,自引:1,他引:0  
目的采用星点设计-效应面法优化阿霉素白蛋白纳米粒的制备工艺。方法采用去溶剂化-固化交联法制备阿霉素白蛋白纳米粒。以白蛋白质量浓度(X1:1ρ,g.L-1)、阿霉素的质量浓度(X2:2ρ,g.L-1)、pH值(X3)及白蛋白理论交联度(X4,%)为考察对象,以纳米粒平均粒径(Y1:d,nm)、zeta电位(Y2:V,mV)、载药量(Y3:w1,%)和包封率(Y4:w2,%)为评价指标,以四因素五水平的星点设计-效应面法筛选出最佳制备工艺;并采用透射电镜观察制得纳米粒的形态。结果优化后的处方工艺为:白蛋白质量浓度为17 g.L-1、阿霉素质量浓度为2 g.L-1、pH值为9、白蛋白理论交联度为125%。以此条件制得的纳米粒平均粒径为(151±0.43)nm,zeta电位为-(18.8±0.21)mV,载药量为(21.4±0.70)%,包封率为(76.9±0.21)%,均与预测值偏差较小。结论阿霉素白蛋白纳米粒的制备采用星点设计-效应面法设计并优化是可行的。  相似文献   

9.
目的:将利福布汀(rifabutin,RFB)制成利福布汀纳米结构脂质载体(RFB-NLC),提高其水溶性、缓释性.方法:首先进行RFB含量测定方法学考察,以乳化剂用量、药物与脂质用量比、固液脂质用量比为处方因素,以包封率和载药量为指标,单因素考察基础上,以Box-Behnken效应面法进行处方优化,采用差式扫描量热法...  相似文献   

10.
目的:制备木犀草素纳米结构脂质载体及其冻干粉,考察体外释放情况,并对其释药模型进行拟合。方法:热熔乳化超声法制备木犀草素纳米结构脂质载体,逐步考察药脂比、固液脂质比例、大豆磷脂和泊洛沙姆188比和表面活性剂总浓度等对包封率、载药量、粒径及Zeta电位的影响,采用正交试验得出木犀草素纳米结构脂质载体最佳处方,进一步制备成冻干粉并对体外释药模型进行拟合。扫描电镜观察纳米粒子形态,X射线粉末衍射法(XRPD)分析存在状态。结果:正交优化木犀草素纳米结构脂质载体的最佳处方的包封率为(77.62±1.51)%,载药量为(3.41±0.11)%,平均粒径为(167.91±6.44)nm,Zeta电位为(-27.7±2.6)mV,外观呈球形或椭圆形。木犀草素相纳米结构脂质载体冻干粉体外释药模型符合Weibull模型:lnln (1/1-Mt/M)=1.025 1lnt-4.600 4(r=0.987 5)。木犀草素以无定型状态包封于纳米结构脂质载体中。结论:木犀草素纳米结构脂质载体工艺重复性良好,值得进一步研究。  相似文献   

11.
星点设计效应面法优化氟比洛芬纳米结构脂质载体的处方   总被引:1,自引:0,他引:1  
目的采用星点设计法以总评"归一值"为指标优化氟比洛芬纳米结构脂质载体的处方。方法以粒径、包封率、载药量、Zeta电位等为评价指标,考察了氟比洛芬(flurbiprofen,FP)加入量、卵磷脂用量、吐温-80和泊洛沙姆188的总量以及去氧胆酸钠的用量对FP-NLC性质的影响。用多元线性方程和二次多项式描述各指标及总评"归一值"和3个影响因素之间的数学关系,根据总评"归一值"的最佳数学模型描绘效应面,选择最佳处方,并进行预测分析。结果 4个影响因素和4个评价指标及总评"归一值"之间存在定量关系。优选的最佳处方为氟比洛芬0.222 g,卵磷脂0.300 g,吐温-80和泊洛沙姆188总质量2.000 g,去氧胆酸钠0.100 g。优化处方各指标的预测值和目标值接近。结论所建立的模型预测性良好,可用于预测和优化氟比洛芬纳米结构脂质载体处方。  相似文献   

12.
The objectives of the present study were (1) to model the effects of process and formulation variables on in vitro release profile of a model drug dyphylline from multi-particulate beads coated with starch acetate (SA); (2) to validate the models using R2 and lack of fit values; (3) to optimize the formulation by response surface methodology (RSM); (4) to characterize the optimized product by thermal, X-ray and infrared spectroscopic analyses. Dyphylline loaded inert beads were coated using organic solution of SA with high degree of substitution. A three-factor, three-level Box-Behnken design was used for the optimization procedure with coating weight gain (X1), plasticizer concentration (X2) and curing temperature (X3) as the independent variables. The regression equation generated for Y5 (cumulative percent drug released after 12 h) was Y5 = 89.83-11.98X1 + 2.82X2 - 4.31X1(2) + 1.90X1X2. Optimization was done by maximizing drug release in 12 h and placing constraints at dissolution time points of 0.5, 1, 4 and 8 h. The drug release data of the optimized product were close to that predicted by the model. The models could explain 99% of variability in responses. Thermal, X-ray and infrared analyses suggested absence of any significant interaction of the drug with the excipients used in the formulation. SEM photographs showed the integrity of the coating layer.  相似文献   

13.
目的:制备长春西汀纳米结构脂质载体,考察其体外释放规律。方法:选择pH7.4的磷酸盐缓冲液(PBS)作为释放介质,采用透析法测定长春西汀纳米结构脂质载体的体外释放。结果:长春西汀纳米结构脂质载体在24h释放为44%,药物在体外呈现缓释释放,符合Weibull分布。结论:所制备长春西汀纳米结构脂质载体体外缓释效果良好。  相似文献   

14.
Intranasal nanostructured lipid carrier (NLC) of lurasidone hydrochloride (LRD) for brain delivery was prepared by the solvent evaporation method. The effects of independent variables, X1-lipid concentration, X-2 surfactant, and X-3 sonication times on dependent variables, Y1-particle size, Y-2 polydispersity index, and Y-3% entrapment efficiency were determined using Box-Behnken design. Optimized LRD-NLC was selected from the Box-Behnken design and evaluated for their morphological, physiological, nasal diffusion, and in vivo distribution in the brain after intranasal administration. Particle size, polydispersity index, and entrapment efficiency of optimized LRD-NLC were found to be 207.4 ± 1.5 nm, 0.392 ± 0.15, and 92.12 ± 1.0%, respectively. Transmission electron microscopy and scanning electron microscopy was used to determine the particle size and surface morphology of LRD-NLC. The prepared LRD-NLC follows biphasic in vitro drug release. Prepared NLC showed a 2-fold increase in LRD concentration in the brain when compared with the drug solution following intranasal administration. Results showed that intranasal route can be a good and efficient approach for delivering the drug directly to the brain and enhancing the drug efficacy in the brain for the management of schizophrenia and a good alternative to oral drug delivery.  相似文献   

15.
The purpose of this work was to evaluate the main and interaction effects of formulation factors on the drug encapsulation efficiency of beta-estradiol biodegradable microspheres by applying response surface methodology. A secondary purpose was to obtain an optimized formula for long-term therapy of osteoporosis. A three factor, three level Box-Behnken experimental design was used to get 15 experimental runs. The independent variables were drug/polymer ratio (X1), dispersing agent concentration (X2), and deaggregating agent concentration (X3). The dependent variables were percentage encapsulation efficiency (Y1), cumulative percent drug released (Y2), and percentage yield of the microspheres (Y3). The formulations were prepared by emulsion solvent evaporation technique using ethyl acetate as organic solvent. The optimized formulation was maximized for encapsulation efficiency and further characterized for the particle size distribution, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR). The mathematical relationship obtained between X1, X2, X3, and Y1 was: Y1 = -129.85 + 29.35X1 + 129.99X2 + 64.82X3 - 3.2X1X2 - 0.29X1X3 - 35.83X2X3 - 2.05X(2)(1) - 13.23X(2)(2) - 5.92X(2)(3) (R2 = 0.99) The equation showed that X1, X2, and X3 affect Y1 positively but interaction between any two of these factors affects Y1 negatively. The most significant interaction was between X2 and X3. The finding indicated that controlled releases beta-estradiol biodegradable microspheres with high encapsulation efficiency and low pulsatile release can be prepared and the quantitative response surface methodology applied helped in understanding the effects and the interaction effects between the three factors applied.  相似文献   

16.
The purpose was to prepare, characterize, and optimize a self-nanoemulsified drug delivery system (SNEDDS) of a model lipophilic compound, all-trans-retinol acetate. As part of the optimization process, the main effects, interaction effects, and quadratic effects of the formulation ingredients were investigated. METHOD: A three-factor, three-level Box-Behnken design was used to explore the quadratic response surfaces and construct a second-order polynomial model in the form: Y = A + A1X1 + A2X2+ A3X3 + A4X1X2 + A5X2X3 + A6X1X3+ A7X1(2) + A8X2(2) + A9X3(2) + E. Amount of added oil (X1), surfactant (X2), and cosurfactant (X3) were selected as the factors. Particle size (Y1), turbidity (Y2), and cumulative amount of the active ingredient emulsified after 10 (Y3) and 30 (Y4) min were the observed variables. Response surface plots were used to demonstrate the effect of factors (X1), (X2), and (X3) on the response (Y4). Amount of added soybean oil (X1), Cremophor EL (X2), and Capmul MCM-C8 (X3) showed a significant effect on the emulsification rates, as well as on the physical properties of the resultant emulsion (particle size and turbidity). Observed and predicted values of Y4 obtained from the constructed equations were in close agreement. Response surface methodology was then used to predict the levels of factors X1, X2, and X3 under the constrained variables for an optimum response. Applied constraints were 0 < Y1 < 0.5, 1 < Y2 < 20, 60 < Y3 < 80, and 90 < Y4 < 100. The predicted values were 0.0704 microm for particle size (Y1), 18.95 NTU for turbidity (Y2), 88.88% for drug release after 10 min (Y3), and 110.7% drug release after 30 min (Y4). Two new formulations were prepared according to the predicted levels. The observed and predicted values were in close agreement.  相似文献   

17.
The aim of the present research work was to systemically device a model of factors that would yield an optimized sustained release dosage form of an anti-hypertensive agent, losartan potassium, using response surface methodology by employing a 3-factor, 3-level Box-Behnken statistical design. Independent variables studied were the amount of the release retardant polymers - HPMC K15M (X(1)), HPMC K100M (X(2)) and sodium carboxymethyl cellulose (X(3)). The dependent variables were the burst release in 15 min (Y(1)), cumulative percentage release of drug after 60 min (Y(2)) and hardness (Y(3)) of the tablets with constraints on the Y(2)=31-35%. Statistical validity of the polynomials was established. In vitro release and swelling studies were carried out for the optimized formulation and the data were fitted to kinetic equations. The polynomial mathematical relationship obtained Y(2)=32.91-2.30X(1)-5.69X(2)-0.97X(3)-0.41X(1)X(2)+0.21X(1)X(3)-0.92X(1)(2)-1.89X(2)(2) (r(2)=0.9944) explained the main and quadratic effects, and the interactions of factors influencing the drug release from matrix tablets. The adjusted (0.9842) and predicted values (0.9893) of r(2) for Y(2) were in close agreement. Validation of the optimization study indicated high degree of prognostic ability of response surface methodology. Tablets showed an initial burst release preceding a more gradual sustained release phase following a non-fickian diffusion process. The Box-Behnken experimental design facilitated the formulation and optimization of sustained release hydrophilic matrix systems of losartan potassium.  相似文献   

18.
The present research work aimed at development and optimisation of mucoadhesive polyherbal gels (MPG) for vaginal drug delivery. As the rheological and mucoadhesive properties of the gels correlate well to each other the prepared MPGs were optimised for maximum mucoadhesion using a relationship between the storage modulus (G') and Gel Index (GI), by employing a 3-factor, 3-level Box-Behnken statistical design. Independent variables studied were the polymer concentration (X(1)), honey concentration (X(2)) and aerosil concentration (X(3)). Aerosil has been investigated for the first time to improve the consistency of gels. The dependent variables studied were the elastic modulus, G'(Y(1)), gel index (Y(2)), and maximum detachment force (Y(3)) with applied constraints of 500相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号