首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Cilostazol is a selective inhibitor of cyclic nucleotide phosphodiesterase 3 (PDE3), which induces a vasodilatoric antiplatelet effect. In the present study, we investigated the impact of cilostazol on the blood-brain barrier (BBB), while focusing on the actin cytoskeleton (F-actin), the permeability of endothelial cells, and the junctional proteins under hypoxia/reoxygenation (H/R). Cilostazol was thus found to inhibit the cytoskeletal reorganization under H/R, in which F-actin decrease at the cell periphery. Accordingly, cilostazol was able to attenuate the hyperpermeability of endothelial cells in H/R to the level of the permeability in normoxia. However, the adherens junction (AJ) protein VE-cadherin was not preserved in the presence of cilostazol under H/R. On the other hand, beta-catenin was slightly retained by cilostazol. In contrast to the redistribution of these proteins, immunoblotting demonstrated the total amount of AJ and tight junction (TJ) proteins (occludin, ZO-1 and ZO-2) to not show any significant change under H/R stress in either the presence or absence of cilostazol. Taken together, cilostazol potently displayed a protective effect against acute ischemia by preventing an increase in the endothelial permeability through the preservation of the actin cytoskeleton and the redistribution of junctional proteins.  相似文献   

3.
Zhang L  Deng M  Zhou S 《Pharmacology》2011,87(5-6):265-273
Tetramethylpyrazine (TMP) is a reactive oxygen species (ROS) antagonist that has potent properties for the treatment of a variety of vascular diseases, such as ischemic stroke and pulmonary hypertension secondary to chronic obstructive pulmonary diseases. However, there are few data about the role of TMP in hypoxia-induced pulmonary vascular leakage. This study examined the effect of TMP on hypoxia-induced pulmonary vascular leakage and the underlying mechanisms. Rat pulmonary microvascular endothelial cells (RPMVECs) treated with TMP or not were subjected to hypoxic or normoxic conditions for 24 h, and the monolayer permeability, intracellular ROS, hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) proteins levels were determined. Additionally, rats administrated TMP were exposed to hypobaric hypoxia to evaluate the effect of TMP in vivo by measuring lung water content, pulmonary vascular leakage into the lungs and immunohistochemistry for HIF-1α and VEGF. Hypoxia was found to cause a significant increase in RPMVEC monolayer permeability and intracellular ROS, HIF-1α and VEGF protein levels. Treatment with TMP decreased the hypoxia-induced RPMVEC monolayer permeability and attenuated the elevation of ROS, HIF-1α and VEGF protein levels. TMP-treated animals showed less pulmonary vascular leakage and HIF-1α and VEGF expression compared with those exposed to hypoxia alone. These observations supported that TMP inhibited the increase in pulmonary vascular permeability induced by hypoxia. The underlying mechanisms may be related to the scavenging of intracellular ROS and the suppression of hypoxia-induced upregulation of HIF-1α and VEGF proteins.  相似文献   

4.
We have examined the mechanisms of cAMP-induced gallbladder relaxation by recording isometric tension and membrane potential in the intact tissue, and global intracellular calcium concentrations ([Ca(2+)](i)) and F-actin content in isolated myocytes. Both the phosphodiesterase (PDE) inhibitor, IBMX (100 microM) and the adenylate cyclase activator, forskolin (2 microM) caused decreases in basal tone that exhibited similar kinetics. IBMX and forskolin both caused concentration dependent, right-downward shifts in the concentration-response curves of KCl and cholecystokinin (CCK). IBMX and forskolin elicited a membrane hyperpolarization that was almost completely inhibited by the ATP-sensitive K(+) channel (K(ATP)) channel blocker, glibenclamide (10 microM). IBMX also induced an increase in large-conductance Ca(2+)-dependent K(+) (BK) channel currents, although the simultaneous blockade of BK and K(ATP) channels did not block IBMX- and forskolin-induced relaxations. Ca(2+) influx activated by L-type Ca(2+) channel activation or store depletion was also impaired by IBMX and forskolin, indicating a general impairment in Ca(2+) entry mechanisms. IBMX also decreases [Ca(2+)](i) transients activated by CCK and 3,6-Di-O-Bt-IP(4)-PM, a membrane permeable analog of inositol triphosphate, indicating an impairment in Ca(2+) release through IP(3) receptors. Ionomycin-induced [Ca(2+)](i) transients were not altered by IBMX, but the contractile effects of the Ca(2+) ionophore were reduced in the presence of IBMX, suggesting that cAMP can decrease Ca(2+) sensitivity of the contractile apparatus. A depolymerization of the thin filament could be reason for this change, as forskolin induced a decrease in F-actin content. In conclusion, these findings suggest that multiple, redundant intracellular processes are affected by cAMP to induce gallbladder relaxation.  相似文献   

5.
Overexpression of adenylyl cyclase (AC) has been proposed as a potential gene therapy strategy to increase cAMP formation in cardiomyocytes and cardiac function in vivo. The impact of AC overexpression on endothelial cells, which will be traversed by genes delivered in vivo, has not been examined. Hence, the goal of the current study was to determine the consequence of AC overexpression on vascular endothelial cells in terms of G-protein-coupled receptor (GPCR) signaling and endothelial barrier function. We demonstrate that adenoviral-mediated gene transfer of AC6 in human umbilical vein endothelial cells preferentially enhances prostacyclin receptor (versus other GPCR)-stimulated cAMP synthesis and, in parallel, inhibits thrombin-stimulated increases in endothelial cell barrier function. Using multiple strategies, including prostacyclin receptor-targeted small interfering RNA, we identify that the enhancement of endothelial barrier function by AC6 overexpression is dependent on an autocrine/paracrine feedback pathway involving the release of prostacyclin and activation of prostacyclin receptors. AC6 overexpression in endothelial cells may have use as a means to enhance prostacyclin function and reduce endothelial barrier permeability.  相似文献   

6.
1. In organisms ranging from paramecia to mammals, hypoxia elicits a regulated decrease in body temperature (Tb). A decrease in Tb is an important adaptation to hypoxia primarily because it lowers metabolic rate when oxygen supply is limited, thus facilitating survival. 2. Although this beneficial response is extremely widespread among taxa, little is known of the cellular mechanisms that mediate hypoxia-induced decreases in Tb. This is due, in large part, to the extreme complexity of vertebrate thermoregulatory systems. 3. The thermoregulatory system of the unicellular paramecium is much simpler than that of vertebrates, yet it responds similarly to hypoxia. Research has explored the functional importance of hypoxia-induced decreases in Th. In addition, a number of possible mediators and signalling pathways in hypoxia-induced reductions in Tb have been assessed. 4. In Paramecium caudatum, hypoxia appears to exert its thermoregulatory effects by inhibiting oxidative phosphorylation. Decreases in intracellular [ATP] and pH may be important intermediate signals. In addition, an endogenous opioid system appears to help mediate hypoxia-induced changes in thermoregulatory behaviour.  相似文献   

7.
In this work, we evaluated the impact of gold nanoparticles on endothelial cell behavior and function beyond the influence on cell viability. Five types of gold nanoparticles were studied: 5?nm and 20?nm bare gold nanoparticles, 5?nm and 20?nm gold nanoparticles with biocompatible polyethylene glycol (PEG) coating and 60?nm bare gold nanoparticles. We found that all tested gold nanoparticles did not affect cell viability significantly and reduced the reactive oxygen species (ROS) level in endothelial cells. Only 20?nm bare gold nanoparticles caused an over 50% increase in endothelial barrier permeability and slow recovery of barrier function was observed after the gold nanoparticles were removed. This impairment in endothelial barrier function was caused by unbalanced forces between intracellular tensions and paracellular forces, actin microfilament rearrangement, which occurred through a Rho/ROCK kinase-dependent pathway and broke the force balance between intracellular tensions and paracellular forces. The size-specific effect of gold nanoparticles on endothelial cells may have important implications regarding the behavior of nanoparticles in the biological system and provide valuable guidance in nanomaterial design and biomedical applications.  相似文献   

8.
Changes in endothelium functions during ischemia are thought to be of importance in numerous pathological conditions, with, for instance, an increase in the release of inflammatory mediators like prostaglandins. Here, we showed that hypoxia increases phospholipase A(2) (PLA(2)) activity in human umbilical vein endothelial cells. Both basal PLA(2) activity and PG synthesis are sensitive to BEL and AACOCF3, respectively, inhibitors of calcium-independent PLA(2) (iPLA(2)) and cytosolic PLA(2) (cPLA(2)), while OPC, an inhibitor of soluble PLA(2) (sPLA(2)) only inhibited the hypoxia-induced AA release and PGF(2alpha) synthesis. Hypoxia does not alter expression of iPLA(2), sPLA(2) and cPLA(2) and cycloheximide did not inhibit PLA(2) activation, indicating that hypoxia-induced increase in PLA(2) activity is due to activation rather than induction. However, mRNA levels for sPLA(2) displayed a 2-fold increase after 2 hr incubation under hypoxia. BAPTA, an intracellular calcium chelator, partially inhibited the AA release in normoxia and in hypoxia. Direct assays of specific PLA(2) activity showed an increase in sPLA(2) activity but not in cPLA(2) activity after 2hr hypoxia. Taken together, these results indicate that the hypoxia-induced increase in PLA(2) activity is mostly due to the activation of sPLA(2).  相似文献   

9.
Because antineoplastic drugs could increase endothelial blood barrier permeability and thrombotic diseases have been described as a complication of treatments with vinca alkaloids, the effect of a therapeutic dose (10-8 M) of vinorelbine on transendothelial permeability was analysed by measuring the movement of albumin across a monolayer of human venous endothelial cells. Induction of procoagulant activity was assessed by evaluation of tissue-factor activity in cell lysates. Vinorelbine increased the permeability of endothelial cells after 3 h of culture, as observed with thrombin. In addition, thrombin induced strong tissue-factor activity, a phenomenon not observed after vinorelbine treatment. These data suggest that vinorelbine could modulate endothelial barrier permeability. This effect is not linked to an increase in tissue-factor activity, suggesting that their induction could operate through separate pathways.  相似文献   

10.
脑损伤过程中血脑屏障通透性的变化及其调节机制   总被引:23,自引:0,他引:23  
血脑屏障是由脑微血管内皮细胞、星形神经胶质细胞、外膜细胞、血管周围巨噬细胞和基底膜组成的一个复杂系统,对维持中枢神经系统的正常功能非常重要。脑损伤如脑缺血、脑缺氧、脑外伤和蛛网膜下腔出血过程中伴随血脑屏障通透性的变化。脑缺血及其再灌注后可通过花生四烯酸代谢途径、嘌呤核苷酸代谢途径及一氧化氮途径产生自由基,可能是血脑屏障通透性增加的重要机制。血脑屏障的破坏可加重脑损伤程度;脑血管疾病时,保护血脑屏障的完整性可能是减轻脑损伤的重要措施。  相似文献   

11.
Hypoxia leads to an elevation of the pulmonary vascular resistance (pvR) in pigs. This was accompanied by an increase of intraparenchymatous concentrations of cyclic GMP (cGMP), while cyclic AMP (cAMP) levels were not different from values measured during normoxia. The inhibition of the hypoxia-induced vasoconstriction by a β2-receptor stimulating agent was associated with a remarkable increase in intraparenchymatous cAMP-concentrations and a decrease in cGMP levels. The correlation analysis between pvR versus the ratio cGMP/cAMP revealed a significant linearity. These data may suggest that cAMP and cGMP are involved in hypoxia induced pulmonary vasoconstriction and its pharmacological inhibition.  相似文献   

12.
We studied the effects of adenosine on injury caused by hypoxia and reoxygenation in LLC-PK1 cells. Lactate dehydrogenase and gamma-glutamyltranspeptidase were released from cells exposed to hypoxia for 6 hr and then reoxygenation for 1 hr. The addition of adenosine at 100 microM to the medium before hypoxia began significantly decreased enzyme leakage into medium during both hypoxia and reoxygenation. The adenosine A1-receptor agonist, R(-)-N6-(2-phenylisopropyl)adenosine (R-PIA), at the concentration of 100 microM, did not affect enzyme release, but the adenosine A2-receptor agonist 2-p-[2-car-boxyethyl]phenethyl-amino-5'-N-ethylcarboxamido-adenosi ne hydrochloride (CGS 21680) at the concentration of 100 nM, suppressed the injury caused by hypoxia and reoxygenation. There were decreases in cAMP contents and ATP levels in LLC-PK1 cells injured by hypoxia and reoxygenation. Adenosine (100 microM) restored ATP levels in the cells during reoxygenation. With adenosine, the intracellular cAMP level was increased prominently during reoxygenation. These results suggest that adenosine protects LLC-PK1 cells from injury caused by hypoxia and reoxygenation by increasing the intracellular cAMP level via adenosine A2 receptor.  相似文献   

13.
Hypobaric hypoxia is encountered at high altitude. It has a deleterious effect on cognitive functions. An important cause of memory impairment at high altitude is the impairment of neurotransmission. The present study investigates the role of cholinergic markers in hypobaric hypoxia-induced memory impairment. Rats were exposed to hypobaric hypoxia at 6,100 m for 7 days in a simulated-decompression chamber. Memory performance was assessed using the Morris water maze task. Cholinergic markers such as acetylcholine, acetylcholinesterase, choline acetyltransferase, α-7-nicotinic acetylcholine receptor and M(1) muscarinic acetylcholine receptor were also evaluated along with neuronal morphology and DNA fragmentation. We found impairment in memory function along with a decrease in acetylcholine levels, increase in acetylcholinesterase activity, down regulation of choline acetyltransferase, α-7-nicotinic acetylcholine receptor and M(1) muscarinic acetylcholine receptor. We also found that cellular damage is associated with a significant increase in DNA fragmentation. However, administration of acetylcholinesterase inhibitors, such as physostigmine and galantamine, resulted in amelioration of the hypobaric hypoxia induced deleterious effects. It improved acetylcholine level, decreased acetylcholinesterase activity and increased the synthesis of acetylcholine by increasing choline acetyltransferase activity. Also, the acetylcholinesterase inhibitors improved neuronal morphology, perhaps by increasing the expression of α-7-nicotinic acetylcholine receptor and by reducing the acetylcholinesterase level in the cortex and the hippocampus. Therefore, our results suggest cholinergic dysfunction is one of the mechanisms involved in hypobaric hypoxia-induced memory impairment and that acetylcholinesterase inhibitors were able to restore cholinergic function and thus improve memory function.  相似文献   

14.
The mechanisms underlying paraquat induced acute lung injury (ALI) is still not clear. C-Src plays an important role in the regulation of microvascular endothelial barrier function and the pathogenesis of ALI. In the present study, we found that paraquat induced cell toxicity and an increase of reactive oxygen species (ROS) in endothelium. Paraquat exposure also induced significant increase of caveolin-1 phosphorylation, caveolae trafficking and albumin permeability in endothelial monolayers. C-Src depletion by siRNA significantly attenuate paraquat induced cell toxicity, caveolin-1 phosphorylation, caveolae formation and endothelial hyperpermeability. N-acetylcysteine (NAC) failed to protect endothelial monolayers against paraquat induced toxicity. Thus, our findings suggest that paraquat exposure increases paracellular endothelial permeability by increasing caveolin-1 phosphorylation in a c-Src dependant manner. The depletion of c-Src might protect microvascular endothelial function by regulating caveolin-1 phosphorylation and caveolae trafficking during paraquat exposure, and might have potential therapeutic effects on paraquat induced ALI.  相似文献   

15.
目的观察血管紧张素Ⅱ(AngⅡ)对培养肾小球内皮细胞(GENC)形态、单层通透性、肌动蛋白骨架的影响,探讨AngⅡ对GENC炎性损伤的机制。方法倒置显微镜观察AngⅡ对体外培养大鼠GENC的形态影响;用二室弥散系统检测AngⅡ对GENC单层通透性的影响;用免疫细胞化学的方法观察AngⅡ对GENCF-肌动蛋白(F-actin)分布的影响。结果AngⅡ浓度大于0.1mg·L-1作用48h内观察到细胞脱落和破裂。10mg·L-1AngⅡ6、12h可使GENC单层通透性增高、F-actin解聚。结论AngⅡ引起GENC脱落和破裂呈时间和剂量依赖性;AngⅡ引起内皮单层通透性的增高的机制可能与F-actin解聚相关;  相似文献   

16.
The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction.  相似文献   

17.
8-bromo-cGMP (1 X 10(-4) M) was found to prevent the hypoxia-induced decrease in creatine phosphate (CrP) and ATP in isolated rat atria. An increase in ADP was also seen after 8-bromo-cGMP treatment, while the AMP level remained unchanged. 8-bromo-cGMP administration resulted in a higher energy charge during the initial state of hypoxia. 8-bromo-cGMP did not affect heart rate or contractility during hypoxia. These results suggest that cGMP improves the energy state of the heart cell in hypoxia. The exact mechanism(s) of these effects is not known but an improvement of oxidative phosphorylation might, quantitatively, account for the changes.  相似文献   

18.
目的探讨阿魏酸甲酯对H9c2心肌细胞缺氧损伤后线粒体功能的影响。方法将细胞分为正常组(不给药、不造模),缺氧模型组(仅造模),阿魏酸甲酯高、中、低(40、20、10μmol/L)剂量组,阳性对照药组(环孢菌素A,1μmol/L)。各给药组细胞经药物预处理及缺氧损伤造模后,检测乳酸脱氢酶(LDH)、丙二醛(MDA)、肌酸激酶(CK)、三磷酸腺苷(ATP)水平,采用流式细胞仪检测细胞内活性氧(ROS)、线粒体膜电位、线粒体膜通透性转换孔开放情况的变化。结果与缺氧模型组比较,阿魏酸甲酯高、中、低剂量组H9c2心肌细胞中LDH、MDA、CK水平和ROS荧光强度均显著降低,ATP水平均显著升高(P<0.01或P<0.05);线粒体膜电位红/绿荧光强度比值和线粒体膜通透性转换孔绿色荧光强度均显著升高(P<0.01或P<0.05)。结论阿魏酸甲酯能逆转缺氧损伤H9c2心肌细胞的生化指标水平,稳定线粒体膜电位,降低线粒体膜通透性转换孔的开放程度,对缺氧损伤H9c2心肌细胞线粒体功能具有明显的保护作用,且这种保护作用呈剂量依赖趋势。  相似文献   

19.
Low concentrations of arachidonic acid monoepoxides protect against ischemia/reperfusion injury. This study examined whether low concentrations of the linoleic acid monoepoxide, cis-12,13-epoxy-9-octadecenoic acid (12,13-EOA), protect renal cells against decreases in mitochondrial and transport functions induced by hypoxia/reoxygenation. Primary cultures of rabbit renal proximal tubular cells (RPTC) were pretreated with diluent or 1, 5, or 10 microM 12,13-EOA for 1 h and exposed to 2 h hypoxia/0.5 h reoxygenation in the absence of 12,13-EOA. Basal respiration, oligomycin-sensitive oxygen consumption (QO2), and ATP content decreased 31, 35 and 65%, respectively, following hypoxia/reoxygenation. Hypoxia/reoxygenation also increased mitochondrial membrane potential (DeltaPsi(m)). Pretreatment with 12,13-EOA prevented decreases in basal and oligomycin-sensitive QO2s and increases in DeltaPsi(m). Despite the protection against decreases in mitochondrial function, 12,13-EOA pretreatment did not prevent the initial decrease in intracellular ATP content following hypoxia. However, pretreatment did accelerate the recovery of intracellular ATP levels during reoxygenation. Pretreatment with 12,13-EOA also prevented hypoxia-induced decreases in active Na+ transport. Ouabain-sensitive QO2 (a marker of active Na+ transport) decreased 38% following hypoxia/reoxygenation but was maintained in RPTC pretreated with 1, 5 or 10 microM 12,13-EOA prior to hypoxia. Pretreatment of RPTC with the hydrolyzed product of 12,13-EOA, 12,13-dihydroxyoctadecenoic acid, did not have any protective effects against mitochondrial dysfunction and decreases in active Na+ transport. Thus, this is the first report demonstrating that preconditioning of RPTC with low concentrations of 12,13-EOA, but not its hydrolyzed product, maintains mitochondrial respiration, accelerates restoration of ATP levels, and prevents decreases in active Na+ transport following hypoxia/reoxygenation.  相似文献   

20.
This study investigated the effects of copper on paracellular permeability and P-glycoprotein (P-gp) in Caco-2 cells. Apical treatment with 100-300 microM CuSO4 in Hanks' balanced salt solution (HBSS, up to 3 hours) induced a time- and concentration-dependent increase in permeability of Caco-2 cell monolayers monitored by transepithelial electrical resistance (TEER). Copper treatment also induced a concentration-dependent reduction of F-actin stain, but not of tight junctional protein ZO-1. In addition, without any adverse effects on TEER, apical treatment with 300 microM CuSO4 in complete medium (for 24 hours) could reduce basolateral-to-apical transport, and increase apical-to-basolateral transport of rhodamine-123 (Rho-123) and accumulation of Rho-123 in Caco-2 cells. Treatment with 10-100 microM CuSO4 in HBSS (up to 3 hours) also induced a time- and concentration-dependent increase in accumulation of Rho-123 in Caco-2 cells. The results indicated that copper treatment increased the paracellular permeability probably by perturbing F-actin skeleton, and inhibited P-gp, thus altering the barrier functions of Caco-2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号