首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boswellic acids (BAs) are assumed as the anti-inflammatory principles of Boswellia species. Initially, it was found that BAs inhibit leukotriene biosynthesis and 5-lipoxygenase (EC number 1.13.11.34), whereas suppression of prostaglandin formation and inhibition of cyclooxygenases (COX, EC number 1.14.99.1) has been excluded. Recently, we demonstrated that BAs also interfere with platelet-type 12-lipoxygenase. Here, we show that BAs, preferably 3-O-acetyl-11-keto-beta-BA (AKBA), concentration-dependently inhibit COX-1 product formation in intact human platelets (IC(50)=6 microM) as well as the activity of isolated COX-1 enzyme in cell-free assays (IC(50)=32 microM). The inhibitory effect of AKBA is reversible, and increased levels of arachidonic acid (AA) as substrate for COX-1 impair the efficacy. COX-1 in platelet lysates or isolated COX-1 selectively bound to an affinity matrix composed of immobilized BAs linked via glutaric acid to sepharose and this binding was reversed by ibuprofen or AA. Automated molecular docking of BAs into X-ray structures of COX-1 yielded positive Chemscore values for BAs, indicating favorable binding to the active site of the enzyme. In contrast, COX-2 was less efficiently inhibited by BAs as compared to COX-1, and pull-down experiments as well as docking studies exclude strong affinities of BAs towards COX-2. In conclusion, BAs, in particular AKBA, directly interfere with COX-1 and may mediate their anti-inflammatory actions not only by suppression of lipoxygenases, but also by inhibiting cyclooxygenases, preferentially COX-1.  相似文献   

2.
We have recently identified hyperforin, a lipophilic constituent of the herb Hypericum perforatum (St. John's wort), as a dual inhibitor of the proinflammatory enzymes cyclooxygenase-1 and 5-lipoxygenase. The aim of the present study was to further elucidate antiinflammatory properties and respective targets of hyperforin. We found that hyperforin inhibited the generation of reactive oxygen species (ROS) as well as the release of leukocyte elastase (degranulation) in human isolated polymorphonuclear leukocytes (PMNL), challenged by the G protein-coupled receptor (GPCR) ligand N-formyl-methionyl-leucyl-phenylalanine (fMLP) with an IC 50 approximately equal 0.3 microM. When PMNL were stimulated with phorbol-12-myristate-13-acetate (PMA) or ionomycin, hyperforin (up to 10 microM) failed to inhibit ROS production and elastase release, respectively. Moreover, hyperforin blocked receptor-mediated Ca(2+) mobilization ( IC 50 approximately equal 0.4 and 4 microM, respectively) in PMNL and monocytic cells, and caused a rapid decline of the intracellular Ca(2+) concentration in resting cells. In contrast, the Ca(2+) influx induced by ionomycin or thapsigargin was not suppressed. Comparative studies with the specific phospholipase C inhibitor U-73122 and hyperforin revealed similarities between both compounds. Thus, U-73122 and hyperforin blocked fMLP- and PAF-induced Ca(2+) mobilization, ROS formation, and elastase release, but failed to suppress these responses when cells were stimulated by PMA or ionomycin. Also, both compounds rapidly decreased basal Ca(2+) levels in resting cells and led to a rapid decline of the Ca(2+) elevations evoked by fMLP or PAF. Our data suggest that hyperforin targets component(s) within G protein signaling cascades that regulate Ca(2+) homeostasis, coupled to proinflammatory leukocyte functions.  相似文献   

3.
Growth inhibitory effects of 15-lipoxygenase-1 [13-(S)-HPODE and 13-(S)-HODE] and 15-lipoxygenase-2 [15-(S)-HPETE and 15-(S)-HETE] (15-LOX-1 and LOX-2) metabolites and the underlying mechanisms were studied on chronic myeloid leukemia cell line (K-562). The hydroperoxy metabolites, 15-(S)-HPETE and 13-(S)-HPODE rapidly inhibited the growth of K-562 cells by 3h with IC(50) values, 10 and 15microM, respectively. In contrast, the hydroxy metabolite of 15-LOX-2, 15-(S)-HETE, showed 50% inhibition only at 40microM by 6h and 13-(S)-HODE, hydroxy metabolite of 15-LOX-1, showed no significant effect up to 160microM. The cells exposed to 10microM of 15-(S)-HPETE and 40microM of 15-(S)-HETE showed typical apoptotic features like release of cytochrome c, caspase-3 activation and PARP-1 (poly(ADP) ribose polymerase-1) cleavage. A flow cytometry based DCFH-DA analysis and inhibitory studies with DPI, a pharmacological inhibitor of NADPH oxidase, NAC (N-acetyl cysteine) and GSH revealed that NADPH oxidase-mediated generation of ROS is responsible for caspase-3 activation and subsequent induction of apoptosis in the K-562 cell line.  相似文献   

4.
We have demonstrated that magnolol suppressed thromboxane B2 (TXB2) and leukotriene B4 (LTB4) formation in A23187-stimulated rat neutrophils. Maximum inhibition was obtained with about 10 microM magnolol. Magnolol was more effective in the inhibition of cyclooxygenase (COX) activity than in the inhibition of 5-lipoxygenase (5-LO) activity as assessed by means of enzyme activity determination in vitro and COX and 5-LO metabolic capacity analyses in vivo. Magnolol alone stimulated cytosolic phospholipase A2 (cPLA2) phosphorylation and the translocation of 5-LO and cPLA2 to the membrane, and evoked arachidonic acid (AA) release. Recruitment of both 5-LO and cPLA2 to the membranes was suppressed by EGTA. Arachidonyl trifluoromethyl ketone (AACOCF3), a PLA2 inhibitor, bromoenol lactone (BEL), a Ca2+-independent PLA2 (iPLA2) inhibitor, and EGTA suppressed the magnolol-induced AA release. However, none of the follows affected magnolol-induced AA-release: 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole (SB203580), a p38 mitogen-activated protein kinase (MAPK) inhibitor, 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene (U0126), a MAPK kinase (MEK) inhibitor, or 2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)-maleimide (GF109203X), a protein kinase C (PKC) inhibitor. In addition, magnolol at 30 microM did not stimulate the p38 MAPK and extracellular signal-regulated kinase 2 (ERK2) enzyme activities. These results indicated that magnolol inhibits the formation of prostaglandins and leukotrienes in A23187-stimulated rat neutrophils, probably through a direct blockade of COX and 5-LO activities. The stimulatory effects of magnolol at high concentration on the membrane association of 5-LO and cPLA2 are attributable to the elevation of [Ca2+]i, and on the AA release is likely via activation of cPLA2 and iPLA2.  相似文献   

5.
Celecoxib inhibits 5-lipoxygenase   总被引:1,自引:0,他引:1  
Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor used in the therapy of inflammatory and painful conditions. Various COX-2-independent pharmacological effects, such as a chemo-preventive and tumor-regressive activity have been suggested, but the respective non-COX-2 targets of celecoxib are still a matter of research. We now demonstrate that celecoxib inhibits 5-lipoxygenase (5-LO), a key enzyme in leukotriene (LT) biosynthesis. Celecoxib suppressed 5-LO product formation in ionophore A23187-activated human polymorphonuclear leukocytes (IC(50) approximately 8 microM). Similarly, celecoxib inhibited LTB(4) formation in human whole blood (IC(50) approximately 27.3 microM). Direct interference of 5-LO with celecoxib was visualized by inhibition of enzyme catalysis both in cell homogenates and with purified 5-LO (IC(50) approximately 23.4 and 24.9 microM, respectively). Related lipoxygenases (12-LO and 15-LO) were not affected by celecoxib. Other COX-2 inhibitors (etoricoxib and rofecoxib) or unselective NSAIDs (non-steroidal anti-inflammatory drugs, diclofenac) failed to inhibit 5-LO. In rats which received celecoxib (i.p.), the blood LTB(4) levels were dose-dependently reduced with an ED(50) value approximately 35.2 mg/kg. Together, celecoxib is a direct inhibitor of 5-LO in vitro and in vivo. These findings provide a potential molecular basis for some of the described COX-2-independent pharmacological effects of celecoxib.  相似文献   

6.
Eicosanoids are potent lipid mediators derived from phospholipase (PL)-released arachidonic acid (AA) coupled to subsequent metabolism by cyclooxygenase (COX)-1/2 or lipoxygenases (LO) which are involved in a variety of homeostatic biological functions and inflammation. We have investigated three lupeolic acids (LA) from the gum resin of Boswellia carterii for their ability to interfere with eicosanoid biosynthesis in human blood cells. A novel, yet unknown C(28)-hydroxylated LA, that is, 3α-acetoxy-28-hydroxylup-20(29)-en-4β-oic acid (Ac-OH-LA) was found to inhibit the biosynthesis of COX-, 5-LO- and 12-LO-derived eicosanoids from endogenous AA in activated platelets, neutrophils, and monocytes from human blood with consistent IC(50) values of 2.3-6.9 μM. In contrast, two other LAs lacking the C(28)-OH moiety were essentially inactive in this respect. Inhibition of eicosanoids by Ac-OH-LA correlated with reduced release of AA in intact cells. When AA was exogenously provided as substrate for cellular eicosanoid biosynthesis the inhibitory effects of Ac-OH-LA were essentially reversed, even though some inhibition of 5-LO and COX-1 product formation still remained. Finally, by means of a cell-free phospholipid hydrolysis assay using human recombinant cytosolic PLA(2)α, we show that Ac-OH-LA may directly interfere with cPLA(2)α activity (IC(50) = 3.6 μM). Together, we identified a novel, naturally occuring C(28)-hydroxylated LA which acts as efficient inhibitor of cPLA(2)α and consequently suppresses eicosanoid biosynthesis in intact cells.  相似文献   

7.
To evaluate anti-inflammatory activity of selected Plantago species (P. lanceolata L. and P. major L.) an optimized in vitro test for determination of cyclooxygenase-1 (COX-1) and 12-lipoxygenase (12-LOX) inhibition potency was undertaken. By using intact cell system (platelets) as a source of COX-1 and 12-LOX enzymes and highly sensitive and specific LC–MS/MS technique for detection of main arachidonic acid metabolites formed by COX-1 and 12-LOX, this test provides efficient method for evaluation of anti-inflammatory potential of plant extracts and isolated compounds. Our results validated the well-known COX-1 inhibitory activity of P. lanceolata and P. major methanol extracts (concentration required for 50% inhibition (IC50) was 2.00 and 0.65 mg/ml, respectively). Furthermore, 12-LOX inhibitory activity of examined extracts was reported for the first time (IC50 = 0.75 and 1.73 mg/ml for P. lanceolata and P. major, respectively). Although renowned inhibitors, such as acetylsalicylic acid and quercetin showed higher activity, this study verifies P. lanceolata and P. major as considerable anti-inflammatory agents.  相似文献   

8.
5-Lipoxygenase (5-LO) is a crucial enzyme in the synthesis of the bioactive leukotrienes (LTs) from arachidonic acid (AA), and inhibitors of 5-LO are thought to prevent the untowarded pathophysiological effects of LTs. In this study, we present the molecular pharmacological profile of the novel nonredox-type 5-LO inhibitor CJ-13,610 that was evaluated in various in vitro assays. In intact human polymorphonuclear leukocytes (PMNL), challenged with the Ca(2+)-ionophore A23187, CJ-13,610 potently suppressed 5-LO product formation with an IC(50)=0.07 microm. Supplementation of exogenous AA impaired the efficacy of CJ-13,610, implying a competitive mode of action. In analogy to ZM230487 and L-739.010, two closely related nonredox-type 5-LO inhibitors, CJ-13,610 up to 30 microm failed to inhibit 5-LO in cell-free assay systems under nonreducing conditions, but inclusion of peroxidase activity restored the efficacy of CJ-13,610 (IC(50)=0.3 microm). In contrast to ZM230487 and L-739.010, the potency of CJ-13,610 does not depend on the cell stimulus or the activation pathway of 5-LO. Thus, 5-LO product formation in PMNL induced by phosphorylation events was equally suppressed by CJ-13,610 as compared to Ca(2+)-mediated 5-LO activation. In transfected HeLa cells, CJ-13,610 only slightly discriminated between phosphorylatable wild-type 5-LO and a 5-LO mutant that lacks phosphorylation sites. In summary, CJ-13,610 may possess considerable potential as a potent orally active nonredox-type 5-LO inhibitor that lacks certain disadvantages of former representatives of this class of 5-LO inhibitors.  相似文献   

9.
10.
BACKGROUND AND PURPOSE: Licofelone is a dual inhibitor of the cyclooxygenase and 5-lipoxygenase (5-LO) pathway, and has been developed for the treatment of inflammatory diseases. Here, we investigated the molecular mechanisms underlying the inhibition by licofelone of the formation of 5-LO products. EXPERIMENTAL APPROACH: The efficacy of licofelone to inhibit the formation of 5-LO products was analysed in human isolated polymorphonuclear leukocytes (PMNL) or transfected HeLa cells, as well as in cell-free assays using respective cell homogenates or purified recombinant 5-LO. Moreover, the effects of licofelone on the subcellular redistribution of 5-LO were studied. KEY RESULTS: Licofelone potently blocked synthesis of 5-LO products in Ca(2+)-ionophore-activated PMNL (IC(50)=1.7 microM) but was a weak inhibitor of 5-LO activity in cell-free assays (IC(50)>10 microM). The structures of licofelone and MK-886, an inhibitor of the 5-LO-activating protein (FLAP), were superimposable. The potencies of both licofelone and MK-886 in ionophore-activated PMNL were impaired upon increasing the concentration of arachidonic acid, or under conditions where 5-LO product formation was evoked by genotoxic, oxidative or hyperosmotic stress. Furthermore, licofelone prevented nuclear redistribution of 5-LO in ionophore-activated PMNL, as had been observed for FLAP inhibitors. Finally, licofelone as well as MK-886 caused only moderate inhibition of the synthesis of 5-LO products in HeLa cells, unless FLAP was co-transfected. CONCLUSIONS AND IMPLICATIONS: Our data suggest that the potent inhibition of the biosynthesis of 5-LO products by licofelone requires an intact cellular environment and appears to be due to interference with FLAP.  相似文献   

11.
Garcinol (camboginol) from the fruit rind of Guttiferae species shows anti-carcinogenic and anti-inflammatory properties, but the underlying molecular mechanisms are unclear. Here we show that garcinol potently interferes with 5-lipoxygenase (EC 7.13.11.34) and microsomal prostaglandin (PG)E2 synthase (mPGES)-1 (EC 5.3.99.3), enzymes that play pivotal roles in inflammation and tumorigenesis. In cell-free assays, garcinol inhibited the activity of purified 5-lipoxygenase and blocked the mPGES-1-mediated conversion of PGH2 to PGE2 with IC50 values of 0.1 and 0.3 μM, respectively. Garcinol suppressed 5-lipoxygenase product formation also in intact human neutrophils and reduced PGE2 formation in interleukin-1β-stimulated A549 human lung carcinoma cells as well as in human whole blood stimulated by lipopolysaccharide. Moreover, garcinol interfered with isolated cyclooxygenase (COX)-1 (EC 1.14.99.1, IC50 = 12 μM) and with the formation of COX-1-derived 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid and thromboxane B2 in human platelets. In contrast, neither Ca2+-ionophore (A23187)-induced arachidonic acid release in neutrophils nor COX-2 activity in A549 cells or whole blood, measured as formation of 6-keto PGF, or isolated human recombinant COX-2 were significantly affected by garcinol (≤30 μM). Together, the high potency of garcinol to selectively suppress PGE2 synthesis and 5-lipoxygenase product formation provides a molecular basis for the anti-inflammatory and anti-carcinogenic effects of garcinol and rationalizes its therapeutic use.  相似文献   

12.
The effect on human platelets of 8-methyl-4-(1-piperazinyl)-7-(3-pyridinylmethoxy)-2H-1-benzopyran-2-one (RC414) was tested in vitro by measuring aggregation induced by several agonists, cAMP and cGMP levels, cAMP phosphodiesterase and PKC activities and [Ca2+]i. The RC414 effect on nitric oxide production was also evaluated. RC414 in a dose-dependent manner inhibited aggregation both in platelet rich plasma and in washed platelets. It was particularly effective in platelets challenged by collagen, ADP and thrombin: IC50 values are 0.51 +/- 0.12 microM, 0.98 +/- 0.36 microM and 1.00 +/- 0.15 microM, respectively. RC414 increased cAMP levels, through the specific inhibition of the cAMP high affinity phosphodiesterase (IC50 = 1.73 +/- 0.35 microM). RC414 reduced [Ca2+]i transients and PKC activation induced by thrombin. In addition RC414 was able to increase nitric oxide formation involving the stimulation of constitutive nitric oxide synthase enzyme. In conclusion, RC414 exerts its powerful anti-platelet activity by increasing cAMP intracellular levels and nitric oxide formation.  相似文献   

13.
BACKGROUND AND PURPOSE Acute silencing of caveolin-1 (Cav-1) modulates receptor-mediated contraction of airway smooth muscle. Moreover, COX-2- and 5-lipoxygenase (5-LO)-derived prostaglandin and leukotriene biosynthesis can influence smooth muscle reactivity. COX-2 half-life can be prolonged through association with Cav-1. We suggested that lack of Cav-1 modulated levels of COX-2 which in turn modulated tracheal contraction, when arachidonic acid signalling was disturbed by inhibition of COX-2. EXPERIMENTAL APPROACH Using tracheal rings from Cav-1 knockout (KO) and wild-type mice (B6129SF2/J), we measured isometric contractions to methacholine and used PCR, immunoblotting and immunohistology to monitor expression of relevant proteins. KEY RESULTS Tracheal rings from Cav-1 KO and wild-type mice exhibited similar responses, but the COX-2 inhibitor, indomethacin, increased responses of tracheal rings from Cav-1 KO mice to methacholine. The phospholipase A(2) inhibitor, eicosatetraynoic acid, which inhibits formation of both COX-2 and 5-LO metabolites, had no effect on wild-type or Cav-1 KO tissues. Indomethacin-mediated hyperreactivity was ablated by the LTD(4) receptor antagonist (montelukast) and 5-LO inhibitor (zileuton). The potentiating effect of indomethacin on Cav-1 KO responses to methacholine was blocked by epithelial denudation. Immunoprecipitation showed that COX-2 binds Cav-1 in wild-type lungs. Immunoblotting and qPCR revealed elevated levels of COX-2 and 5-LO protein, but not COX-1, in Cav-1 KO tracheas, a feature that was prevented by removal of the epithelium. CONCLUSION AND IMPLICATIONS The indomethacin-induced hypercontractility observed in Cav-1 KO tracheas was linked to increased expression of COX-2 and 5-LO, which probably enhanced arachidonic acid shunting and generation of pro-contractile leukotrienes when COX-2 was inhibited.  相似文献   

14.
CBS-1108, 2- acetylthiophene 2- thiazolyhydrazone , inhibits 5-lipoxygenase activity in polymorphonuclear leukocytes (PMNs) (IC50 = 2 X 10(-6) M), 12-lipoxygenase (IC50 = 9 X 10(-6) M) and cyclooxygenase (IC50 = 2 X 10(-6) M) in platelets. Inhibition of the two pathways of arachidonic acid cascade could lead to additional beneficial anti-inflammatory activity by comparison with classical aspirin-like drugs. In fact, only inhibitors of both cyclooxygenase and lipoxygenase such as NDGA and CBS-1108 inhibit leukocyte migration in an animal model of acute inflammatory response.  相似文献   

15.
Renal ischaemia is associated with accumulation of fatty acids (FA) and mobilisation of arachidonic acid (AA). Given the capacity of UDP-glucuronosyltransferase (UGT) isoforms to metabolise both drugs and FA, we hypothesised that FA would inhibit renal drug glucuronidation. The effect of FA (C2:0-C20:5) on 4-methylumbelliferone (4-MU) glucuronidation was investigated using human kidney cortical microsomes (HKCM) and recombinant UGT1A9 and UGT2B7 as the enzyme sources. 4-MU glucuronidation exhibited Michaelis-Menten kinetics with HKCM (apparent K(m) (K(m)(app)) 20.3 microM), weak substrate inhibition with UGT1A9 (K(m)(app) 10.2 microM, K(si) 289.6 microM), and sigmoid kinetics with UGT2B7 (S(50)(app)440.6 microM) Similarly, biphasic UDP-glucuronic acid (UDPGA) kinetics were observed with HKCM (S(50) 354.3 microM) and UGT1A9 (S(50) 88.2 microM). In contrast, the Michaelis-Menten kinetics for UDPGA observed with UGT2B7 (K(m)(app) 493.2 microM) suggested that kinetic interactions with UGTs were specific to the xenobiotic substrate and the co-substrate (UDPGA). FA (C16:1-C20:5) significantly inhibited (25-93%) HKCM, UGT1A9 or UGT2B7 catalysed 4-MU glucuronidation. Although linoleic acid (LA) and AA were both competitive inhibitors of 4-MU glucuronidation by HKCM (K(i)(app) 6.34 and 0.15 microM, respectively), only LA was a competitive inhibitor of UGT1A9 (K(i)(app) 4.06 microM). In contrast, inhibition of UGT1A9 by AA exhibited atypical kinetics. These data indicate that LA and AA are potent inhibitors of 4-MU glucuronidation catalysed by human kidney UGTs and recombinant UGT1A9 and UGT2B7. It is conceivable therefore that during periods of renal ischaemia FA may impair renal drug glucuronidation thus compromising the protective capacity of the kidney against drug-induced nephrotoxicity.  相似文献   

16.
The structure-activity relationships of flavonoids with regard to their inhibitory effects on phosphodiesterase (PDE) isozymes are little known. The activities of PDE1-5 were measured by a two-step procedure using cAMP with [(3)H]-cAMP or cGMP with [(3)H]-cGMP as substrates. In the present results, PDE1, 5, 2, and 4 isozymes were partially purified from guinea pig lungs in that order, and PDE3 was from the heart. The IC(50) values of PDE1-5 were greater than those reported previously for the reference drugs, vinpocetin, EHNA, milrinone, Ro 20-1724, and zaprinast, by 5-, 5-, 7-, 5-, and 3-fold, respectively. As shown in Table 2, luteolin revealed non-selective inhibition of PDE1-5 with IC(50) values in a range of 10-20 microM, as did genistein except with a low potency on PDE5. Daidzein, an inactive analogue of genistein in tyrosine kinase inhibition, showed selective inhibition of PDE3 with an IC(50) value of around 30 microM, as did eriodictyol with an IC(50) value of around 50 microM. Hesperetin and prunetin exhibited more-selective inhibition of PDE4 with IC(50) values of around 30 and 60 microM, respectively. Luteolin-7-glucoside exhibited dual inhibition of PDE2/PDE4 with an IC(50) value of around 40 microM. Diosmetin more-selectively inhibited PDE2 (IC(50) of 4.8 microM) than PDE1, PDE4, or PDE5. However, biochanin A more-selectively inhibited PDE4 (IC(50) of 8.5 microM) than PDE1 or PDE2. Apigenin inhibited PDE1-3 with IC(50) values of around 10-25 microM. Myricetin inhibited PDE1-4 with IC(50) values of around 10-40 microM. The same was true for quercetin, but we rather consider that it more-selectively inhibited PDE3 and PDE4 (IC(50) of < 10 microM). In conclusion, it is possible to synthesize useful drugs through elucidating the structure-activity relationships of flavonoids with respect to inhibition of PDE isozymes at concentrations used in this in vitro study.  相似文献   

17.
Based on its capacity to inhibit in vitro HIV-1 replication in T cells and the release of pro-inflammatory cytokines in monocytes, the prenylated heterodimeric phloroglucinyl α-pyrone arzanol was identified as the major anti-inflammatory and anti-viral constituent from Helichrysum italicum. We have now investigated the activity of arzanol on the biosynthesis of pro-inflammatory eicosanoids, evaluating its anti-inflammatory efficacy in vitro and in vivo. Arzanol inhibited 5-lipoxygenase (EC 7.13.11.34) activity and related leukotriene formation in neutrophils, as well as the activity of cyclooxygenase (COX)-1 (EC 1.14.99.1) and the formation of COX-2-derived prostaglandin (PG)E2in vitro (IC50 = 2.3–9 μM). Detailed studies revealed that arzanol primarily inhibits microsomal PGE2 synthase (mPGES)-1 (EC 5.3.99.3, IC50 = 0.4 μM) rather than COX-2. In fact, arzanol could block COX-2/mPGES-1-mediated PGE2 biosynthesis in lipopolysaccharide-stimulated human monocytes and human whole blood, but not the concomitant COX-2-derived biosynthesis of thromboxane B2 or of 6-keto PGF, and the expression of COX-2 or mPGES-1 protein was not affected. Arzanol potently suppressed the inflammatory response of the carrageenan-induced pleurisy in rats (3.6 mg/kg, i.p.), with significantly reduced levels of PGE2 in the pleural exudates. Taken together, our data show that arzanol potently inhibits the biosynthesis of pro-inflammatory lipid mediators like PGE2in vitro and in vivo, providing a mechanistic rationale for the anti-inflammatory activity of H. italicum, and a rationale for further pre-clinical evaluation of this novel anti-inflammatory lead.  相似文献   

18.
Regulation of leukocyte and platelet lipoxygenases by hydroxyeicosanoids   总被引:1,自引:0,他引:1  
During allergic and inflammatory reactions, arachidonic acid is oxidized by lipoxygenases to a variety of biologically active products, including leukotrienes. The mechanisms for regulation of the different lipoxygenase activities are not well defined. We report here that [14C]arachidonic acid metabolism by the 5- and 15-lipoxygenase activities in rabbit leukocytes and the 12-lipoxygenase in rabbit platelets is inhibited by various hydroxyeicosatetraenoic acids (HETEs). 15-HETE was the most effective inhibitor of the 5- and 12-lipoxygenases, whereas similar inhibitory potencies were observed for 5-HETE and 12-HETE acting on the 15-lipoxygenase. These three enzyme pathways were all least sensitive to their own products HETEs. To determine which structural characteristics of 15-HETE are essential for inhibition of the 5-lipoxygenase, various derivatives were prepared and purified by high pressure liquid chromatography, and their structures were confirmed by gas chromatography-mass spectrometry. The inhibitory potencies of 15-HETE analogs with different degrees of unsaturation were in the order of three double bonds greater than 4 greater than 2 greater than 0. 15-Hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE) was four times more potent than 15-HETE. The 15-acetoxy, 15-keto and methyl ester derivatives were of comparable activity to 15-HETE, and the 15-acetoxy methyl ester derivative was less potent. Based upon the observed patterns of inhibition, we postulate that complex interregulatory relationships exist between the various lipoxygenases, and that cells containing these lipoxygenases may interact with each other via their lipoxygenase metabolites.  相似文献   

19.
U-73122 (1-[6-[[17-beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino] hexyl]-1H-pyrrole-2,5-dione) is a widely used antagonist of phosphoinositide-specific phospholipase C (PLC) and is frequently used to define a role of PLC in receptor-mediated elevation of intracellular calcium concentration ([Ca2+]i). In human polymorphonuclear leukocytes (PMNLs), U-73122 inhibited increases in [Ca2+]i induced by G protein-coupled receptor (GPCR) agonists (N-formyl-methionyl-leucyl-phenylalanine or platelet-activating factor; IC50 of approximately 2 to 4 microM), but it failed to suppress responses induced by ionomycin or thapsigargin. 5-Lipoxygenase (5-LO) is a Ca(2+)-regulated enzyme that can be activated in leukocytes by stimuli that elevate [Ca2+]i. Attempts to investigate the involvement of PLC in cellular 5-LO activation revealed that U-73122 suppresses 5-LO product synthesis regardless of the stimulus and independently of Ca2+. Thus, U-73122 blocked 5-LO product synthesis induced by cell stress, involving 5-LO phosphorylation pathways in the absence of Ca2+ with an IC50 of approximately 2 microM. Direct inhibition of 5-LO by U-73122 was evident in PMNL homogenates (IC50 of approximately 2.4 microM), and isolated human recombinant 5-LO enzyme was potently inhibited by U-73122 (IC50 of approximately 30 nM). Thiols (glutathione) strongly blunted the effect of U-73122 on isolated 5-LO. On the other hand, depletion of cellular thiols by N-ethylmaleimide strongly increased the efficacy of U-73122 to inhibit 5-LO in intact cells or corresponding homogenates, suggesting that U-73122 may interfere with sulfhydryl groups on 5-LO. Since 5-LO products induce increases in [Ca2+]i via GPCRs, caution should be used when interpreting data where U-73122 is used as tool to determine a direct role of PLC in receptor-mediated Ca2+ mobilization.  相似文献   

20.
Five lignans, l-sesamin, savinin, helioxanthin, taiwanin C, and cis-dibenzylbutyrolactone, were isolated from the root of Acanthopanax chiisanensis (Araliaceae), a Korean medicinal plant, and their inhibitory effects on the production of prostaglandin (PG) E(2) stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in rat peritoneal macrophages were examined. Among the five lignans, taiwanin C was the most potent (IC(50)=0.12 microM), followed by helioxanthin, cis-dibenzylbutyrolactone, and savinin. l-Sesamin had no effect. Taiwanin C showed no inhibitory effect on the TPA-induced release of radioactivity from [3H]arachidonic acid-labeled macrophages, nor did it inhibit the expression of cyclooxygenase (COX)-2 protein induced by TPA. However, the activities of isolated COX-1 and COX-2 were inhibited by taiwanin C (IC(50)=1.06 and 9.31 microM, respectively), reflecting the inhibition of both COX-1- and COX-2-dependent PGE(2) production in the cell culture system. These findings suggest that the mechanism of action of taiwanin C in the inhibition of PGE(2) production is the direct inhibition of COX enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号