首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
《Immunobiology》2023,228(2):152323
ObjectivePreventing the progression of hepatic fibrosis is an important strategy to improve the prognosis of liver disease. The purpose of this study was to investigate the role of sirtuin7 (SIRT7) and high mobility group box 1 (HMGB1) acetylation in the occurrence and development of hepatic fibrosis.Materials and methodsHepatic fibrosis mice model was induced by CCl4. TGF-β1 was used to activated quiescent hepatic stellate cell (qHSC) into activated HSC (aHSC). Hematoxylin-eosin evaluated hepatic fibrosis in vivo, and the distribution of α-smooth muscle actin (α-SMA) or HMGB1 was detected by immunohistochemistry or immunofluorescence. The expressions of SIRT7, autophagy related proteins, and HSC activation-related proteins were detected by Western blot. Immunoprecipitation detected the acetylation level of HMGB1. Lysine mutants of HMGB1 were constructed in vitro to explore the acetylation sites of HMGB1.ResultsHepatocyte autophagy and activation levels were enhanced in CCl4 group or aHSC group, and the acetylation level of HMGB1 was increased. Nuclear transfer of HMGB1 occurred in aHSC, and HMGB1was mainly distributed in cytoplasm. The expression of SIRT7 in CCl4 group or aHSC group was most significantly decreased, and knockdown of SIRT7 leads to increased levels of HSCs autophagy and activation. Overexpression of SIRT7 or interference of HMGB1 alone in aHSC can reduce the level of autophagy and activation of aHSC. However, continued overexpression of SIRT7 in shHMGB1-aHSC could not reduce the autophagy and activation levels of aHSC. Among the 11 Flag-HMGB1 mutants, the acetylation level of K86R-Flag-HMGB1 was the lowest. The acetylation level of K86R-Flag-HMGB1 did not change due to SIRT7 downregulation.ConclusionThis study proved that SIRT7 can directly target the K86R site of HMGB1 and participate in regulating the expression and distribution of HMGB1, thus affecting the autophagy and activation level of HSCs.  相似文献   

3.
《Research in microbiology》2023,174(3):103996
The unfolded protein response (UPR) is an important pathway to prevent endoplasmic reticulum (ER) stress in eukaryotic cells. In Saccharomyces cerevisiae, Ire1 is a key regulatory factor required for HAC1 gene splicing for further production of functional Hac1 and activation of UPR gene expression. Autophagy is another mechanism involved in the attenuation of ER stress by ER-phagy, and Atg8 is a core protein in autophagy. Both autophagy and UPR are critical for ER stress response, but whether they act individually or in combination in Candida albicans is unknown. In this study, we explored the interaction between Ire1 and the autophagy protein Atg8 for the ER stress response by constructing the atg8Δ/Δire1Δ/Δ double mutant in the pathogenic fungus C. albicans. Compared to the single mutants atg8Δ/Δ or ire1Δ/Δ, atg8Δ/Δire1Δ/Δ exhibited much higher sensitivity to various ER stress-inducing agents and more severe attenuation of UPR gene expression under ER stress. Further investigations showed that the double mutant had a defect in ER-phagy, which was associated with attenuated vacuolar fusion under ER stress. This study revealed that Ire1 and Atg8 in combination function in the activation of the UPR and ER-phagy to maintain ER homeostasis under ER stress in C. albicans.  相似文献   

4.
BRCA1/2 genes with high-penetrance are tumor suppressor and tumor susceptibility genes that play important roles in the homologous recombination mechanism in DNA repair and increase breast cancer risk. Variants in BRCA1 or BRCA2 are the main causes of familial and early-onset breast cancer. This study investigated pathogenic variant belonging to the BRCA2 gene splice region in monozygotic triplets. A 44-year-old woman was diagnosed with breast cancer when she was 32 years old. Her monozygotic sister had a history of breast cancer. No malignancy was detected in the third one of the monozygotic triplets. Sanger sequencing was used to evaluate the BRCA1/2 gene status of the patient and family members. It was figured out that they had the same genetic variant, a heterozygous germ-line splice region variant (c.7008-1G > C) in the BRCA2 gene. This novel splice region variant may be a new pathogenic variant of the BRCA2 gene. Its association with breast cancers needs to be further verified in more patient cases.  相似文献   

5.
《Human immunology》2022,83(12):843-856
Classical Hodgkin lymphoma (CHL) is characterized by extensive inflammatory immune cells, which predict the disease prognosis. Therefore, this study aimed to explore the significance of different tumor-infiltrated immune cells and subpopulation ratios observed in the tumor microenvironment of CHL, particularly relating to the disease's prognosis-focusing on overall survival (OS) and event-free survival (EFS). Utilizing immunohistochemistry, the quantification and exploration of selected immune cells' subsets, including CD3+, CD4+, CD8+, FOXP3+, CD20+, and CD68+ were conducted on 102 histological samples with primary CHL. Eosinophils were pathologically assessed. Besides, we determined the ratios between different tumor-infiltrated immune cells for each patient. Kaplan-Meier method and Cox regression modeling were used for survival analysis. We demonstrated that among all ratios and immune cells individually, only a higher FOXP3+/CD68+ ratio (≥1.36 cutoff) displayed a tendency towards a favorable OS (p = 0.057, HR = 0.43 [0.18–1.02]) and EFS (p = 0.067, HR = 0.44 [0.18–1.06]) using Cox regression modeling. Moreover, the Kaplan-Meier method showed an association of a higher FOXP3+/CD68+ ratio with a longer 5-years OS (p = 0.037) and a tendency to a better EFS (p = 0.051); however, neither the combined FOXP3+ and CD68+ nor FOXP3+ or CD68+ separately was correlated to the CHL survival. Together, these results demonstrated that the FOXP3+/CD68+ ratio could predict the outcomes of CHL, providing more informative significance than FOXP3+ and CD68+ combined or FOXP3+ and CD68+ individually and might be a potential indicator of risk stratification, which has an important value for guiding the clinical treatment.  相似文献   

6.
7.
DExH-box helicases are involved in unwinding of RNA and DNA. Among the 16 DExH-box genes, monoallelic variants of DHX16, DHX30, DHX34, and DHX37 are known to be associated with neurodevelopmental disorders. In particular, DHX30 is well established as a causative gene for neurodevelopmental disorders. Germline variants of DHX9, the closest homolog of DHX30, have not been reported until now as being associated with congenital disorders in humans, except that one de novo heterozygous variant, p.(Arg1052Gln) of the gene was identified during comprehensive screening in a patient with autism; unfortunately, the phenotypic details of this individual are unknown. Herein, we report a patients with a heterozygous de novo missense variant, p.(Gly414Arg) of DHX9 who presented with a short stature, intellectual disability, and ventricular non-compaction cardiomyopathy. The variant was located in the glycine codon of the ATP-binding site, G-C-G-K-T. To assess the pathogenicity of these variants, we generated transgenic Drosophila lines expressing human wild-type and mutant DHX9 proteins: 1) the mutant proteins showed aberrant localization both in the nucleus and the cytoplasm; 2) ectopic expression of wild-type protein in the visual system led to the rough eye phenotype, whereas expression of the mutant proteins had minimal effect; 3) overexpression of the wild-type protein in the retina led to a reduction in axonal numbers, whereas expression of the mutant proteins had a less pronounced effect. Furthermore, in a gene-editing experiment of Dhx9 G416 to R416, corresponding to p.(Gly414Arg) in humans, heterozygous mice showed a reduced body size, reduced emotionality, and cardiac conduction abnormality. In conclusion, we established that heterozygosity for a loss-of-function variant of DHX9 can lead to a new neurodevelopmental disorder.  相似文献   

8.
《Human immunology》2020,81(6):305-313
HLA-G has been widely implicated in advanced cancers through different pathways of immunosuppression allowing tumor escape. Contrarily, HLA-E has a controversial role in the tumor escape from the immune system. IDO catabolic enzyme is known to be up-regulated in many tumors types allowing their immune escape. Based on these considerations, we investigated the expression of HLA-G, HLA-E and IDO molecules in endometrial cancer (EC) and their association with prognostic clinicopathologic parameters. Their expression were checked in tumoral and adjacent endometrial tissues. Both HLA-G and IDO immunostaining were significantly increased in EC tissues compared to normal residual endometrial glands (Mann Whitney U-test, p = 0.0001 and p = 0,020 respectively). However, HLA-E was highly expressed in tumoral tissues as well as in normal residual endometrial glands (respectively, 100% and 81.8%). Increased HLA-G expression levels were observed in high histological grade (grade 3), and in the non-endometrioid type 2 EC. Unexpectedly, patients with IDO Low expression had significantly impaired overall survival compared to patients with IDO High (log-rank p = 0.021). Conversely, HLA-E low expression was associated to an improved overall survival EC (log-rank p = 0.004). We concluded that, HLA-G and IDO are highly expressed in EC compared to adjacent normal endometrial tissues, that might be interesting for the EC outcome.  相似文献   

9.
《Human immunology》2023,84(2):98-105
Acute lymphoid (ALL) and myeloid leukemia (AML) are known to be invasive and highly lethal hematological malignancies. Because current treatments are insufficient and have a variety of side effects, researchers are looking for new and more effective therapeutic methods. Interestingly, ongoing efforts to find the best approach to optimize NK cell anti-leukemia potential shed light on the successful treatment of cancer. Mature KIR+NK cells ability to remove HLA Class-I deficient cells has been exploited in cancer immunotherapy. Here, we generated KIR+NK cells from cord blood stem cells using IL-2 and IL-15 cytokines. Our finding underlined the importance of KIR expression in the cytotoxic function of NK cells. Taken together, this study presented an effective in vitro method for the expansion and differentiation of KIR+NK cells using cytokines without any feeder cells. Furthermore, the presented culture condition could be useful for the generation of mature and pure NK cells from limited numbers of CD34+ cord blood cells and might be used as a novel method to improve the current state of cancer therapy.  相似文献   

10.
《Immunobiology》2022,227(6):152283
The claudin 18.2(CLDN18.2) antigen is highly expressed in gastric mucosa epithelial cells and frequently expressed in malignant tumors. Positive clinical outcomes have popularized claudin 18.2 as a novel cellular and antibody therapeutic. Here, we designed a bispecific antibody-ZWB67 using the XFab® platform, aimed at redirecting CD3+ effector T cells to CLDN18.2+ target cells or tissues. Physicochemical characterization, binding properties, T cell stimulatory activity, and T cell-dependent cellular cytotoxicity of ZWB67 were evaluated in dosage intervals using antigens of CD3 and target cells expressing CLDN18.2 or CD3. Then, the anti-tumor activity was assessed in humanized CD3EDG mice bearing MC-38-hCLDN18.2 tumors. Our data demonstrate that ZWB67 specifically binds to the human CD3e antigen (KD = 1.04E?08 M) and binds more strongly to CLDN18.2+ cells than to CD3+ cells (4.3- to 9.2-fold difference). ZWB67 showed good activity in the luciferase reporter system and exhibited dose-dependent activation, cytotoxicity of T cells, and cytokine release when co-cultured with CLDN18.2+ cells and CD3+ T cells. ZWB67 also exhibited high in vivo efficacy in the MC-38-hCLDN18.2 xenograft mouse model. In conclusion, the novel anti-CLDN18.2 × anti-CD3 bispecific antibody exhibited low affinity for anti-CD3, highly specific binding, potent cytotoxicity, and anti-tumor activity. These data provide a basis for future preclinical and clinical development of this therapeutic strategy.  相似文献   

11.
《Immunobiology》2022,227(4):152219
BackgroundSepsis causes severe acute lung injury (ALI). Circular RNA is involved in the regulation of sepsis-related ALI progression. The regulation mechanism of circEXOC5 in sepsis-induced ALI is still unclear. Whether circEXOC5 is involved in the regulation of ferroptosis remains to be explored.MethodsWe constructed a mouse model of sepsis through cecal ligation and puncture (CLP). LPS induced mouse lung microvascular endothelial cells (MPVECs) to construct a sepsis cell model. The expression of circEXOC5 in the sepsis model was detected by qPCR. The extent of lung injury in mice was analyzed by HE staining. The contents of GSH/GSSG, iron, MDA and 4HNE in mice lung tissues and cells were detected by the kit. And further the ROS content was detected in the cells. Finally, the binding relationship between circEXOC5 and PTBP1 was detected by RIP and RNA pulldown.ResultsOur results showed that the circEXOC5 expression was significantly increased in the in vivo and in vitro models of sepsis. And after inhibiting circEXOC5, it improved the lung injury of septic mice. It was confirmed in cell models that ROS levels and ferroptosis in cells were reduced after knocking down circEXOC5. In addition, the expressions of ACSL4 and Gpx4 proteins were regulated by the level of circEXOC5. Finally, we also found that circEXOC5 had a direct binding relationship with PTBP1.ConclusionOur study found that the expression of cell ferroptosis and circEXOC5 increased in ALI induced by sepsis, and circEXOC5 aggravated ferroptosis in septic cells by regulating the PTBP1/ACSL4 axis.  相似文献   

12.
13.
BackgroundsGenetic polymorphism of the toll-like receptor 2, 4 (TLR2, TLR4) and natural resistance-associated macrophage protein 1 (NRAMP1) genes may affect host immune response to Mycobacterium tuberculosis (Mtb) and lead to the variation of susceptibility to tuberculosis (TB) in humans. However, the association of single nucleotide polymorphisms (SNP) in these genes and the susceptibility to TB in Mongolian population has not been investigated.MethodsWe conducted a genetic association study including 197 Mongolian TB patients and 217 Mongolian healthy controls in Inner Mongolia, China. DNA of blood samples was extracted and genotyped for 5 SNPs in TLR4, 4 SNPs in TLR2 and 5 SNPs in NRAMP1 by next-generation sequencing. A logistic regression was performed and odds ratios (OR) with 95% confidence intervals (CI) were calculated to estimate the risk at TB by each SNP.ResultsThe most significant locus associated with the susceptibility to TB was TLR4 rs11536889. The frequency for allele C of TLR4 rs11536889 was 16.0% in TB patients and 23.5% in healthy controls, respectively. Rs11536889 C/C genotype of TLR4 was significantly associated with the low susceptibility against TB compared to G/G genotype in the dominant model (OR 0.62, 95% CI 0.41–0.94).ConclusionsThe TLR4 rs11536889 polymorphisms might be an indicative of the low susceptibility to TB in Mongolian population, which provides valuable information for the generation of effective strategy or measurement against TB in Mongolian population.  相似文献   

14.
《Human immunology》2022,83(2):130-133
The stimulation of AT1R (Angiotensin II Receptor Type 1) by Angiotensin II has, in addition to the effects on the renin-angiotensin system, also pro-inflammatory effects through stimulation of ADAM17 and subsequent production of INF-gamma and Interleukin-6. This pro-inflammatory action stimulate the cytokine storm that characterizes the most severe forms of SARS-CoV-2 infection. We studied the effect of AT1Rab on the AT1R on 74 subjects with SARS-CoV-2 infection with respiratory symptoms requiring hospitalization. We divided the patients into 2 groups: 34 with moderate and 40 with severe symptoms that required ICU admission. Hospitalized subjects showed a 50% reduction in the frequency of AT1Rab compared to healthy reference population. Of the ICU patients, 33/40 (82.5%) were AT1Rab negative and 16/33 of them (48.5%) died. All 7 patients positive for AT1Rab survived. These preliminary data seem to indicate a protective role played by AT1R autoantibodies on inflammatory activation in SARS-CoV-2 infection pathology.  相似文献   

15.
Although the treatment of aspergillosis has been studied for years, the optimal nonsurgical treatment of chronic cavitary pulmonary aspergillosis (CCPA) remains unsatisfactory, especially in lung cancer. We report two advanced non-small cell lung cancer (NSCLC) patients who recovered from CCPA following instillation of Amphotericin B (AmB) by bronchoscopy combined with systemic voriconazole. The first patient was diagnosed with lung adenocarcinoma after right upper lobe resection and was treated with anaplastic lymphoma kinase-targeted therapy. Chest computed tomography (CT) revealed a right pulmonary cavity containing solid materials. The second patient was diagnosed with squamous cell carcinoma and received immunotherapy following surgery, chemotherapy, and radiotherapy. Chest CT tomography revealed a mass in the right lung cavity. Both patients' cultures and next-generation sequencing of their bronchoalveolar lavage (BAL) samples revealed presence of Aspergillus fumigatus. In addition, the galactomannan test of both patients BAL samples was positive. Systemic voriconazole was prescribed based on in vitro susceptibility testing. The chest images and clinical symptoms of both patients did not improve after one month of voriconazole therapy within the therapeutic blood concentration. Considering the low local concentrations of antifungals against CCPA, AmB instillation by bronchoscopy combined with systemic voriconazole was utilized. The chest CT images and clinical symptoms of both patients markedly improved in the following third month. Instillation of AmB combined with systemic voriconazole may be a promising treatment option for NSCLC patients with CCPA who fail voriconazole monotherapy.  相似文献   

16.
《Human immunology》2022,83(11):768-777
Cancer is a disease having global consequences. Though several new strategies and treatments have been developed so far, they often come with malicious side effects and this paved ways for demand of naturally extracted/driven product as potent anti-cancer agent owing to their reduced toxicity and side effects. One such common Indian household plant Neem (Azadirachta Indica) and its extract have variegated immunomodulatory effects as anti-cancer agent. Neem Leaf Glycoprotein (NLGP) modifies immune cells present in the tumor surroundings as well as in the peripheral system, rather than directly attacking the cancer cells. NLGP acts as a natural immunomodulator showing several functions like sustained tumor growth regulation by stimulating central and effector memory cells as a vaccination adjuvant, normalization of angiogenic activities, controls hypoxia, improves immune evasion techniques as well as suppresses the activity of several immunological cells (Tregs, myeloid-derived suppressor cells, and tumor-associated macrophages) which promote tumor growth and metastasis in the tumor microenvironment (TME). NLGP prioritises type1 immune-microenvironment which consists of T-bet+IFN-γ-producing group 1 innate lymphoid cell (ILC) (ILC1 and natural killer cells), CD8+ cytotoxic T cells (TC1), and CD4+ T helper1 (Th1) cells. In this review we aim to summarize detailed activity of NLGP in cancer immunoregulation.  相似文献   

17.
《Immunobiology》2023,228(2):152345
BackgroundThe NLRP3 inflammasome in macrophages is known to promote infection-related vascular growth, and NLRP3 inflammasome activation interacts with PAH. STING is a crucial inflammatory reaction link that can increase the overexpression of NLRP3. However, the expression and effect of STING in PAH have not been elucidated. We examined the expression and articulation of STING in PAH and researched its hidden mechanism.MethodsA SU5416 plus hypoxia (Su/Hy)-induced rat model of PAH was constructed to examine STING activation. Su/Hy induced PAH rats were given a prophylactic injection of STING the inhibitor C-176. After modeling, hemodynamic changes, right ventricular hypertrophy index, lung morphological features, inflammasome activation, and proinflammatory cytokine secretion levels were assessed. In addition, the STING agonist DMXAA or inhibitor C-176 was used to interfere with LPS-induced BMDMs, NLRP3 inflammasome activation and cytokine secretion were examined, and the effect on PASMCs was evaluated in a coculture system.ResultsSTING expression increased significantly in the lung tissue of Su/Hy-treated PAH rats compared with normoxia-treated rats. Moreover, STING inhibitors can alleviate the Su/Hy-induced increase in pulmonary artery pressure and restrain the activation of the NLRP3 inflammasome and proinflammatory cytokines. In vitro experiments confirmed that STING affected the expression of the NLRP3 inflammasome and the secretion of inflammatory cytokines in BMDMs and promoted the proliferation of PASMCs in the coculture system.ConclusionOur study shows that STING is activated in Su/Hy-induced PAH and boosts the actuation of the macrophage NLRP3 inflammasome to advance the inflammatory response and vascular proliferation in rats with Su/Hy-induced pulmonary hypertension.  相似文献   

18.
《Acta histochemica》2023,125(4):152042
This study aimed to investigate the effect of hypoxia on the anti-inflammatory effect of adipose-derived mesenchymal stem cells (AMSCs) in vitro and its possible mechanism. AMSCs were cultured in vitro in a hypoxic environment with 3% O2, and a normoxic (21% O2) environment was used as the control. The cells were identified by in vitro adipogenic and osteogenic differentiation and cell surface antigen detection, and the cell viability were detected. The effect of hypoxic AMSCs on macrophage inflammation was analyzed by co-culture. The results showed that under hypoxia, AMSCs had better viability, significantly downregulated the expression of inflammatory factors, alleviated macrophage inflammation, and activated the PI3K/AKT/HIF-1α pathway.  相似文献   

19.
《Immunobiology》2023,228(2):152353
Cancer comes after cardiovascular diseases in terms of mortality rate in the world. Chemotherapy, radiotherapy and surgical interventions are the current cancer treatment. Recently, it has been observed that immunotherapeutic approaches provide a significant improvement when used along with these interventions. The mononuclear system mainly consists of macrophages that play an active role in the pathology of many diseases because of having high plasticity capacities. Previous research suggested that they can be used as an alternative to cancer treatment. Aim was to investigate the effect of apelin on macrophage polarization in the tumor microenvironment.Mouse macrophage cell line RAW264.7 cells and head and were chosen for this study. The apelin expression was knockdown in neck cell carcinoma cell line SCCL MT1 cells using shRNA technique. SCCL MT1 cells having normal or suppressed apelin expression were co-cultured with mouse macrophage RAW264.7 cells. The effect of co-culturing on the expression of inflammatory genes in RAW264.7 cells was investigated.Suppressed apelin expression in SCCL MT1 cells resulted in elevated pro-inflammatory response in co-cultured macrophages. Expression of the IL1β, IL6, and TNFα genes significantly increased, however anti-inflammatory cytokine levels were significantly decreased. However, in the control group, a downregulation was determined in pro-inflammatory genes, while an increase was observed in anti-inflammatory genes. The protein levels of these cytokines in concordance with the RT-PCR analysis.As a result of this study, apelin released from cancer cells was found to affect macrophage polarization. These results indicated that the apelin peptide may cause the intense presence of M2-type macrophages in the tumor niche, and the therapeutic approaches targeting of apelin in cancer cells may have a potential role in macrophage polarization.  相似文献   

20.
《Human immunology》2022,83(5):437-446
Expression of allergic diseases in very early childhood indicates that early life events play a significant role in childhood allergy development. The developmental origins of allergy hypothesis suggest events initiated in the in-utero period derived from the interaction between maternal, placental, and fetal factors may contribute to childhood allergy susceptibility. Environmental impacts on placental function and fetal programming are imperative in defining illness risk during pregnancy. Fetal programming, a process by which an injury delivered during a critical period of development, causes immediate adaptive responses with long-term consequences on an organism’s structure or function. During pregnancy, the maternal immune response is skewed towards Th2-related humoral responses, hence increasing the susceptibility of childhood allergy development. Maternal atopic phenotype markedly increases the probability of her offspring developing an allergic predisposition. Combination of in utero events – which include maternal asthma or infection, and exposures to maternal allergy which changes the placental function – can alter placental cytokine expression and could predispose offspring to an allergic phenotype. All these events may affect embryology and fetal immune system development. Interestingly, the mechanism and role of the in-utero events on the developmental origins of allergy are not clearly understood; this will be addressed in this review.(199 words)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号