首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bilitranslocase is a rat liver plasma membrane carrier, displaying a high-affinity binding site for bilirubin. It is competitively inhibited by grape anthocyanins, including aglycones and their mono- and di-glycosylated derivatives. In plant cells, anthocyanins are synthesized in the cytoplasm and then translocated into the central vacuole, by mechanisms yet to be fully characterized. The aim of this work was to determine whether a homologue of rat liver bilitranslocase is expressed in carnation petals, where it might play a role in the membrane transport of anthocyanins. The bromosulfophthalein-based assay of rat liver bilitranslocase transport activity was implemented in subcellular membrane fractions, leading to the identification of a bromosulfophthalein carrier (K(M) = 5.3 microm), which is competitively inhibited by cyanidine 3-glucoside (Ki = 51.6 microm) and mainly noncompetitively by cyanidin (Ki = 88.3 microm). Two antisequence antibodies against bilitranslocase inhibited this carrier. In analogy to liver bilitranslocase, one antibody identified a bilirubin-binding site (Kd = 1.7 nm) in the carnation carrier. The other antibody identified a high-affinity binding site for cyanidine 3-glucoside (Kd = 1.7 microm) on the carnation carrier only, and a high-affinity bilirubin-binding site (Kd = 0.33 nm) on the liver carrier only. Immunoblots showed a putative homologue of rat liver bilitranslocase in both plasma membrane and tonoplast fractions, isolated from carnation petals. Furthermore, only epidermal cells were immunolabeled in petal sections examined by microscopy. In conclusion, carnation petals express a homologue of rat liver bilitranslocase, with a putative function in the membrane transport of secondary metabolites.  相似文献   

2.
The transport of two different classes of organic anions (cholephilic dyes; the sulfobromophthalein, BSP, and bile acids; taurocholate, TC) was investigated in the HepG2 cell line. At 37 degrees C, BSP uptake was found to be biphasic with an apparent saturative curve in the concentration range between 0-6 microM followed by a linear component up to 18 microM. Kinetic constant determination showed an apparent Km of 26.6 +/- 3.1 microM and a Vmax of 5.64 +/- 0.82 nmol BSP.min-1.mg prot-1. At 4 degrees C, uptake was linear. By subtracting this latter component from the total uptake, a saturable, carrier mediated uptake was found with an apparent Km of 3.6 +/- 1.0 microM BSP and a Vmax of 0.37 +/- 0.04 nmol BSP.min-1.mg prot-1 (m +/- SEM, n = 6). These values were fully comparable with those found in freshly isolated male hepatocyte. Immunoblot analysis of HepG2 cell plasma membrane revealed the presence of bilitranslocase when tested against a monospecific antibody against this carrier molecule. On the contrary, TC uptake was linear up to concentration of 100 microM TC. No difference was observed in the presence or absence of Na+. Immunoprecipitation analysis showed the absence of the putative carrier of TC. These data indicate that the HepG2 cell line expresses a functioning bilitranslocase-mediated system. Conversely, carrier mediated bile acid uptake is absent in line with the lack of expression of the carrier protein.  相似文献   

3.
Bilitranslocase is a plasma membrane carrier involved in the uptake of bilirubin and other organic anions from the blood into the liver cell. In the membrane, the carrier occurs as two interchangeable metastable forms, with high and low affinity for the substrates, respectively. The latter form can be specifically produced by either cysteine- or arginine modification. In liver plasma membrane vesicles, the serine-specific reagent phenylmethylsulphonyl fluoride is a partial inhibitor of bilitranslocase-mediated BSP transport rate. In this work, phenylmethyl-sulphonyl fluoride is shown to reduce the carrier maximal transport rate, without affecting its affinity for that substrate. In addition, it is found that the chemical modification caused by this reagent neither influences the equilibrium between the high- and the low-affinity forms nor prevents their free interconversion. From the effects of combined derivatizations of cysteine(s), arginine(s) and serine(s), it is concluded that the functionally relevant aminoacid residues lie in a close spatial arrangement. Also, in this study, the PMSF-modified serine(s) is shown to be involved in bilirubin binding by bilitranslocase.  相似文献   

4.
Bilitranslocase is a plasma membrane carrier involved in the uptake of bilirubin and other organic anions from the blood into the liver cell. In the membrane, the carrier occurs as two interchangeable metastable forms, with high and low affinity for the substrates, respectively. The latter form can be specifically produced by either cysteine- or arginine modification. In liver plasma membrane vesicles, the serine-specific reagent phenylmethylsulphonyl fluoride is a partial inhibitor of bilitranslocase-mediated BSP transport rate. In this work, phenylmethylsulphonyl fluoride is shown to reduce the carrier maximal transport rate, without affecting its affinity for that substrate. In addition, it is found that the chemical modification caused by this reagent neither influences the equilibrium between the high- and the low-affinity forms nor prevents their free interconversion. From the effects of combined derivatizations of cysteine(s), arginine(s) and serine(s), it is concluded that the functionally relevant aminoacid residues lie in a close spatial arrangement. Also, in this study, the PMSF-modified serine(s) is shown to be involved in bilirubin binding by bilitranslocase.  相似文献   

5.
SummaryBilitranslocase is a plasma membrane carrier localised at the vascular pole of the rat liver cell, where it mediates uptake of organic anions from the blood into the liver. This carrier is also present in the epithelium of the rat gastric mucosa, with similar molecular mass and functional properties. An immunohistochemical study reveals that both the mucus-secreting cells of the gastric pit and the H+-secreting parietal cells express bilitranslocase. These data point to a possible role of bilitranslocase and of its food-borne substrates (anthocyanins and nicotinic acid) in regulating the function and the permeability of the gastric mucosa.  相似文献   

6.
The interaction of anthocyanins with bilitranslocase   总被引:2,自引:0,他引:2  
Bilitranslocase (TC 2.A.65.1.1) is an organic anion membrane carrier expressed at the sinusoidal domain of the liver plasma membrane and in epithelial cells of the gastric mucosa. Its substrates are sulfobromophthalein, bilirubin, and nicotinic acid. This work reports on the identification of a new class of bilitranslocase substrates, i.e., anthocyanins. Seventeen out thes 20 compounds tested behaved as competitive inhibitors of bilitranslocase transport activity (K(I)=1.4-22 microM). Their structure-activity relationship reveals that mono- and di-glucosyl anthocyanins, the anthocyanin species occurring in food, are better ligands than the corresponding aglycones. Moreover, the first interaction of anthocyanins with the carrier occurs through hydrophilic moieties, such as the 3-glucosyl moiety and the B ring for the monoglucosides, through the 5-glucosyl moiety and the A ring for the diglucosides, and through either the B or the A ring for the aglycones. These findings suggest that bilitranslocase could play a role in the bioavailability of anthocyanins.  相似文献   

7.
Both inactivation of sulfobromophthalein transport in rat liver plasma membrane vesicles by sulfhydryl group reagents and subsequent reactivation by 2-mercaptoethanol are shown to be modulated by ligands to bilitranslocase. In particular, bilirubin, sulfobromophthalein and Thymol blue behave as negative effectors in the inactivation reaction and as positive effectors in the reactivation reaction. Kinetic data provide further evidence of the existence of two classes of sulfhydryl groups involved in transport activity. The effect brought about by remarkably low concentrations of bilirubin is in line with the physiological function of bilitranslocase as a bilirubin carrier.  相似文献   

8.
In order to characterize the mechanism for bilirubin transport in the liver, the uptake of bilirubin diglucuronide (BDG) into purified sinusoidal plasma membrane vesicles was investigated. BDG uptake was saturable, and was inhibited by sulfobromophthalein and unconjugated bilirubin, but was not affected by sodium taurocholate. BDG uptake was sodium-independent and was stimulated by intravesicular bilirubin or BDG (trans-stimulation). BDG transport showed strong potential sensitivity; vesicle inside-negative membrane potential created by different anion gradients inhibited BDG uptake whereas vesicle inside-positive membrane potential generated by potassium gradients and valinomycin markedly stimulated BDG transport. These data suggest that BDG, sulfobromophthalein, and probably unconjugated bilirubin share a common transporter in liver cells which is sodium independent, membrane-potential-dependent and capable of exchange. The direction of transport in vivo may be governed by the intracellular concentration of BDG and of other yet unidentified organic anions sharing this transporter.  相似文献   

9.
Bilitranslocase, a plasma membrane protein involved in bilirubin and other organic anion uptake by the liver, exhibits a high molecular weight (170 000) when isolated in the presence of deoxycholate. This value is decreased to approx. 100 000 if deoxycholate is not included in the isolation medium. Both preparations can be resolved into two kinds of subunit, α and β, of 37 000 and 35 500, respectively, by reduction with 2-mercaptoethanol and addition of sodium dodecyl sulfate. Under these conditions the two subunits are still capable of high-affinity sulfobromophthalein binding and, despite the presence of the detergent, may be isolated by preparative polyacrylamide gel electrophoresis still associated with the dye. It may be suggested that the physiological subunit composition of bilitranslocase is α2-β.  相似文献   

10.
Specific guanido group reagents inhibit bilitranslocase transport activity in rat liver plasma membrane vesicles. Their reaction is shown to be affected by sulfobromophthalein, Thymol blue and bilirubin, which are translocated by bilitranslocase across the plasma membrane. It is concluded that the transport function of bilitranslocase depends on arginine residues, which are involved in the interaction with the molecules to be translocated.  相似文献   

11.
Phylogenetic Study of Organic Anion Transfer from Plasma into the Liver   总被引:8,自引:0,他引:8  
THE discovery of two intracellular proteins, Y and Z, with the unique property of binding certain organic anions, may help to account for the selective and rapid transfer of bilirubin and various dyes, drugs, steroids and metabolites from plasma into the liver, which is known to occur among mammals1–3. In the rat, from which they were first isolated3, Y and Z have been shown to possess the following characteristics, (i) They selectively bind organic anions, such as bilirubin, sulphobromophthalein (BSP) and indocyanine green, in vivo and in vitro3, (ii) The principal organic anion binding protein, Y, is present predominantly in the liver3,4, (iii) The concentration of Y increases after administration of phenobarbital, DDT and other drugs and concomitantly the rate of organic anion transfer into the liver is increased5. Furthermore, in the newborn monkey, the concentration of Y and the transfer into the liver of BSP, as measured by plasma disappearance rates, are both low and subsequently increase6. We report here the results of a phylogenetic study involving various vertebrates. These results further support the theory that Y and Z are intracellular acceptors which facilitate the transfer of certain organic anions from plasma into the liver.  相似文献   

12.
Using a combination of genomic and post-genomic approaches is rapidly altering the number of identified human influx carriers. A transmembrane protein bilitranslocase (TCDB 2.A.65) has long attracted attention because of its function as an organic anion carrier. It has also been identified as a potential membrane transporter for cellular uptake of several drugs and due to its implication in drug uptake, it is extremely important to advance the knowledge about its structure. However, at present, only the primary structure of bilitranslocase is known. In our work, transmembrane subunits of bilitranslocase were predicted by a previously developed chemometrics model and the stability of these polypeptide chains were studied by molecular dynamics (MD) simulation. Furthermore, sodium dodecyl sulfate (SDS) micelles were used as a model of cell membrane and herein we present a high-resolution 3D structure of an 18 amino acid residues long peptide corresponding to the third transmembrane part of bilitranslocase obtained by use of multidimensional NMR spectroscopy. It has been experimentally confirmed that one of the transmembrane segments of bilitranslocase has alpha helical structure with hydrophilic amino acid residues oriented towards one side, thus capable of forming a channel in the membrane.  相似文献   

13.
In the gel filtration of 100,000 g rat liver supernatant, four major glutathione S-transferase activities, S-aryl-, S-epoxide-, S-aralykyl, and S-alkyltransferase, were identified as having an elution volume identical to that of fractions exhibiting either glutathione or sulfobromophthalein sodium binding. The organic anions, sulfobromophthalein sodium, indocyanine green, and bilirubin, were found to be competitive inhibitors of the four glutathione S-transferase activities. These findings indicate that the glutathione S-transferases bind organic anions, and as a group, have a similar molecular weight to a known organic anion-binding protein. It is proposed that these enzymes also serve nonenzymically as a group of binding proteins in the hepatic cytoplasmic transport of organic anions.  相似文献   

14.
Sulfobromophthalein electrogenic uptake into rat liver plasma membrane vesicles was shown to admit only the quinoid, trivalent anion. The minimum requirement for this electrogenic process has been investigated in rat liver plasma membrane vesicles by using Thymol blue, a pH-indicator phthalein occurring either as a neutral, phenolic molecule or as a quinoid, monovalent anion. It has been found that Thymol blue is taken up electrogenically, in accordance with Michaelis-Menten kinetics. Parallel inhibition experiments have shown that both sulfobromophthalein and Thymol blue electrogenic uptakes are performed by the same carrier. It is, therefore, concluded that the phthalein structure recognized for transport is the quinoid molecule, with the dissociated acidic function on the benzene ring. Moreover, inhibitions by rifamycin-SV and bilirubin suggest that there exists a common uptake system for bilirubin, phthaleins and other anions. Taurocholate, on the contrary, does not appear to be involved in the same process.  相似文献   

15.
The hepatobiliary transport of two cholephilic anions, bilirubin and bromosulfophthalein, is compared in the rat following the administration of clofibrate. In the treated rats, the bilirubin transport maximum (on a whole liver basis) increased by 84%. This increase is related to a higher excretion rate of conjugated bilirubin in bile. Hepatic unconjugated bilirubin is not modified. On the contrary, bromosulfophthalein transport decreased slightly but significantly. These results suggest that clofibrate acts primarily on bilirubin hepatic transport by stimulating the conjugating enzyme activity.  相似文献   

16.
Flavonoids are dietary components involved in decreasing oxidative stress in the vascular endothelium and thus the risk of endothelial dysfunction. However, their very low concentrations in plasma place this role in doubt. Thus, a relationship between the effective intracellular concentration of flavonoids and their bioactivity needs to be assessed. This study examined the uptake of physiological concentrations of cyanidin 3-glucoside, a widespread dietary flavonoid, into human vascular endothelial cells. Furthermore, the involvement of the membrane transporter bilitranslocase (TC No. 2.A.65.1.1) as the key underlying molecular mechanism for membrane transport was investigated by using purified anti-sequence antibodies binding at the extracellular domain of the protein. The experimental observations were carried out in isolated plasma membrane vesicles and intact endothelial cells from human endothelial cells (EA.hy926) and on an ischemia-reperfusion model in isolated rat hearts. Cyanidin 3-glucoside was transported via bilitranslocase into endothelial cells, where it acted as a powerful intracellular antioxidant and a cardioprotective agent in the reperfusion phase after ischemia. These findings suggest that dietary flavonoids, despite their limited oral bioavailability and very low postabsorption plasma concentrations, may provide protection against oxidative stress-based cardiovascular diseases. Bilitranslocase, by mediating the cellular uptake of some flavonoids, is thus a key factor in their protective activity on endothelial function.  相似文献   

17.
Routes which contribute to the transport of methotrexate across the plasma membrane of L1210 cells have been evaluated. A single high affinity transport system was found to be the only route for methotrexate uptake. This conclusion was derived from the observations that influx at high substrate concentrations (up to 50 microM) both reaches a single maximum value and can be inhibited by greater than 98% either by treatment of the cells with an active ester of methotrexate or by the direct addition of excess amounts of competitive inhibitors. Efflux, conversely, could be separated into three components. One of these routes was dependent upon extracellular anions and could be blocked by active ester treatment and, therefore, appeared to be the same transport system which mediates methotrexate influx. A second route was identified by its sensitivity to bromosulfophthalein, while a third component was insensitive to both active ester treatment and to bromosulfophthalein. When these efflux routes were quantitated in a buffered saline medium, the methotrexate influx carrier was found to account for the major portion (71%) of total efflux. The inhibitor-insensitive component contributed an additional 23%, while the remaining 6% was attributable to the bromosulfophthalein-sensitive route. The addition of glucose increased total efflux by 3-fold and caused a substantial change in the proportion of efflux that occurred via each of the three components. The major portion of efflux (46%) now occurred via the bromosulfophthalein-sensitive route, while the influx carrier contributed only 29% of the total. The inhibitor-insensitive route accounted for the remaining 25%. The opposite result was obtained with metabolic inhibitors which decreased total efflux but increased the contribution by the influx carrier to greater than 80%. The demonstration of multiple routes for methotrexate efflux and their differential sensitivities to alterations in energy metabolism thus provides a basis for explaining previously described asymmetries between the influx and efflux of methotrexate in mouse leukemia cells.  相似文献   

18.
We cloned and expressed a new organic anion transporting polypeptide (OATP), termed human OATP2, (OATP-C, LST-1; symbol SLC21A6), involved in the uptake of various lipophilic anions into human liver. The cDNA encoding OATP2 comprised 2073 base pairs, corresponding to a protein of 691 amino acids, which were 44% identical to the known human OATP. An antibody directed against the carboxy terminus localized OATP2 to the basolateral membrane of human hepatocytes. Northern blot analysis indicated a strong expression of OATP2 only in human liver. Transport mediated by recombinant OATP2 and its localization were studied in stably transfected Madin-Darby canine kidney strain II (MDCKII) and HEK293 cells. Confocal microscopy localized recombinant OATP2 protein to the lateral membrane of MDCKII cells. Substrates included 17beta-glucuronosyl estradiol, monoglucuronosyl bilirubin, dehydroepiandrosterone sulfate, and cholyltaurine. 17beta-Glucuronosyl estradiol was a preferred substrate, with a Michaelis-Menten constant value of 8.2 microM; its uptake was Na(+) independent and was inhibited by sulfobromophthalein, with a inhibition constant value of 44 nM. Our results indicate that OATP2 is important for the uptake of organic anions, including bilirubin conjugates and sulfobromophthalein, in human liver.  相似文献   

19.
Bilirubin, the end product of heme catabolism, is taken up from the blood circulation into the liver. This work identifies a high-affinity transport protein mediating the uptake of bilirubin and its conjugates into human hepatocytes. Human embryonic kidney cells (HEK293) permanently expressing the recombinant organic anion-transporting polypeptide 2 (human OATP2, also known as LST-1 or OATP-C; symbol SLC21A6) showed uptake of [(3)H]monoglucuronosyl bilirubin, [(3)H]bisglucuronosyl bilirubin, and [(3)H]sulfobromophthalein with K(m) values of 0.10, 0.28, and 0.14 microm, respectively. High-affinity uptake of unconjugated [(3)H]bilirubin by OATP2 occurred in the presence of albumin and was not mediated by another basolateral hepatic uptake transporter, human OATP8 (symbol SLC21A8). OATP2 and OATP8 differed by their capacity to extract substrates from albumin before transport. In comparison to the high-affinity transport by OATP2, OATP8 transported [(3)H]sulfobromophthalein and [(3)H]monoglucuronosyl bilirubin with lower affinity, with K(m) values of 3.3 and 0.5 microm, respectively. The organic anion indocyanine green potently inhibited transport mediated by OATP2, with a K(i) value of 112 nm, but did not inhibit transport mediated by OATP8. Human OATP2 may play a key role in the prevention of hyperbilirubinemia by facilitating the selective entry of unconjugated bilirubin and its glucuronate conjugates into human hepatocytes.  相似文献   

20.
Membrane proteins represent about a third of the gene products in most organisms, as revealed by the genome sequencing projects. They account for up to two thirds of known drugable targets, which emphasizes their critical pharmaceutical importance. Here we present a study on bilitranslocase (BTL) (TCDB 2.A.65), a membrane protein primarily involved in the transport of bilirubin from blood to liver cells. Bilitranslocase has also been identified as a potential membrane transporter for cellular uptake of several drugs and due to its implication in drug uptake, it is extremely important to advance the knowledge about its 3D structure. However, at present, only a limited knowledge is available beyond the primary structure of BTL. It has been recently confirmed experimentally that one of the four computationally predicted transmembrane segments of bilitranslocase, TM3, has a helical structure with hydrophilic amino acid residues oriented towards one side, which is typical for transmembrane domains of membrane proteins. In this study we confirmed by the use of multidimensional NMR spectroscopy that the second transmembrane segment, TM2, also appears in a form of α-helix. The stability of this polypeptide chain was verified by molecular dynamics (MD) simulation in dipalmitoyl phosphatidyl choline (DPPC) and in sodium dodecyl sulfate (SDS) micelles. The two α-helices, TM2 corroborated in this study, and TM3 confirmed in our previous investigation, provide reasonable building blocks of a potential transmembrane channel for transport of bilirubin and small hydrophilic molecules, including pharmaceutically active compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号