首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bilitranslocase is a plasma membrane carrier involved in the uptake of bilirubin and other organic anions from the blood into the liver cell. In the membrane, the carrier occurs as two interchangeable metastable forms, with high and low affinity for the substrates, respectively. The latter form can be specifically produced by either cysteine- or arginine modification. In liver plasma membrane vesicles, the serine-specific reagent phenylmethylsulphonyl fluoride is a partial inhibitor of bilitranslocase-mediated BSP transport rate. In this work, phenylmethyl-sulphonyl fluoride is shown to reduce the carrier maximal transport rate, without affecting its affinity for that substrate. In addition, it is found that the chemical modification caused by this reagent neither influences the equilibrium between the high- and the low-affinity forms nor prevents their free interconversion. From the effects of combined derivatizations of cysteine(s), arginine(s) and serine(s), it is concluded that the functionally relevant aminoacid residues lie in a close spatial arrangement. Also, in this study, the PMSF-modified serine(s) is shown to be involved in bilirubin binding by bilitranslocase.  相似文献   

2.
Specific guanido group reagents inhibit bilitranslocase transport activity in rat liver plasma membrane vesicles. Their reaction is shown to be affected by sulfobromophthalein, Thymol blue and bilirubin, which are translocated by bilitranslocase across the plasma membrane. It is concluded that the transport function of bilitranslocase depends on arginine residues, which are involved in the interaction with the molecules to be translocated.  相似文献   

3.
Bilitranslocase is a carrier protein localized at the basolateral domain of the hepatocyte plasma membrane. It transports various organic anions, including bromosulfophthalein and anthocyanins. Functional studies in subcellular fractions enriched in plasma membrane revealed a high-affinity binding site for bilirubin, associated with bilitranslocase. The aim of this work was to test whether the liver uptake of bilirubin depends on the activity of bilitranslocase. To this purpose, an assay of bilirubin uptake into HepG2 cell cultures was set up. The transport assay medium contained bilirubin at a concentration of approximately 50 nm in the absence of albumin. To analyse the relative changes in bilirubin concentration in the medium throughout the uptake experiment, a highly sensitive thermal lens spectrometry method was used. The mechanism of bilirubin uptake into HepG2 cells was investigated by using inhibitors such as anti-sequence bilitranslocase antibodies, the protein-modifying reagent phenylmethanesulfonyl fluoride and diverse organic anions, including nicotinic acid, taurocholate and digoxin. To validate the assay further, both bromosulfophthalein and indocyanine green uptake in HepG2 cells was also characterized. The results obtained show that bilitranslocase is a carrier with specificity for both bilirubin and bromosulfophthalein, but not for indocyanine green.  相似文献   

4.
Both inactivation of sulfobromophthalein transport in rat liver plasma membrane vesicles by sulfhydryl group reagents and subsequent reactivation by 2-mercaptoethanol are shown to be modulated by ligands to bilitranslocase. In particular, bilirubin, sulfobromophthalein and Thymol blue behave as negative effectors in the inactivation reaction and as positive effectors in the reactivation reaction. Kinetic data provide further evidence of the existence of two classes of sulfhydryl groups involved in transport activity. The effect brought about by remarkably low concentrations of bilirubin is in line with the physiological function of bilitranslocase as a bilirubin carrier.  相似文献   

5.
Sulfobromophthalein (BSP) electrogenic transport activity in a plasma membrane vesicle preparation from rat liver is shown to depend on free sulfhydryl groups. These are organized in two classes, one of which does not react with the sulfhydryl group reagent 5,5'-dithiobis(2-nitrobenzoate). The two classes appear to be involved in BSP transport independently. However, reactivity of one class can be shown to be affected by alkylation of the other. Hence, it is concluded that both classes are located on the same carrier system, which previous research has established to be the integral sinusoidal membrane protein bilitranslocase.  相似文献   

6.
Sulfobromophthalein electrogenic uptake into rat liver plasma membrane vesicles was shown to admit only the quinoid, trivalent anion. The minimum requirement for this electrogenic process has been investigated in rat liver plasma membrane vesicles by using Thymol blue, a pH-indicator phthalein occurring either as a neutral, phenolic molecule or as a quinoid, monovalent anion. It has been found that Thymol blue is taken up electrogenically, in accordance with Michaelis-Menten kinetics. Parallel inhibition experiments have shown that both sulfobromophthalein and Thymol blue electrogenic uptakes are performed by the same carrier. It is, therefore, concluded that the phthalein structure recognized for transport is the quinoid molecule, with the dissociated acidic function on the benzene ring. Moreover, inhibitions by rifamycin-SV and bilirubin suggest that there exists a common uptake system for bilirubin, phthaleins and other anions. Taurocholate, on the contrary, does not appear to be involved in the same process.  相似文献   

7.
Apolipoprotein D (apo D) is a 30-kDa glycoprotein of unknown function that is associated with high-density lipoproteins (HDL). Because unconjugated bilirubin has been shown to bind apo D with a 0. 8:1 stoichiometry, we examined the contribution of this protein to transport of bilirubin in human plasma. Density gradient centrifugation analysis using physiological concentrations of [(14)C]bilirubin reveals that 9% of unconjugated bilirubin is associated with HDL, with the remaining pigment bound primarily to serum proteins (i.e., albumin). The percentage of total plasma bilirubin bound to HDL was found to increase proportionally with bilirubin concentration. Affinity of human apo D for bilirubin was determined by steady-state fluorescence quenching, with Scatchard analysis demonstrating a single binding site for unconjugated bilirubin with an affinity constant (K(a)) of approximately 3 x 10(7) M(-1). Incorporation of apo D into phosphatidylcholine vesicles had no effect on K(a), suggesting that a lipid environment does not alter the affinity of the protein for bilirubin. Using stopped-flow techniques, the first-order rate constant for bilirubin dissociation from apo D was measured at 5.4 s(-1) (half-time = 129 ms). Our findings indicate that HDL is the principal nonalbumin carrier of bilirubin in human plasma and further support the proposition that the affinity of HDL for bilirubin is primarily the result of binding to apo D.  相似文献   

8.
A serine endopeptidase was partially purified from rat liver plasma membranes by using a four-step procedure: solubilization with N-lauroylsarcosine; Ultrogel AcA-34 chromatography; CM Affi-Gel blue chromatography; agarose-soybean trypsin inhibitor chromatography. This enzyme was found to hydrolyze casein and various chromogenic peptide substrates; highest activity occurred with H-D-Val-Leu-Arg-p-nitroanilide, reported to be a specific substrate for human glandular kallikreins. The enzyme was heat-sensitive, showed a pH optimum between 8.0 and 9.0 and was inhibited by D-Phe-L-Phe-L-Arg-CH2Cl, aprotinin, diisopropyl fluorophosphate (DFP), soybean trypsin inhibitor, phenylmethylsulphonyl fluoride, leupeptin, antipain and dithiothreitol. This liver plasma membrane proteinase has an apparent molecular weight of about 30 000 as determined by Ultrogel AcA-34 chromatography and by autoradiography of [3H]DFP-labelled protein electrophoresis.  相似文献   

9.
Bilitranslocase is a rat liver plasma membrane carrier, displaying a high-affinity binding site for bilirubin. It is competitively inhibited by grape anthocyanins, including aglycones and their mono- and di-glycosylated derivatives. In plant cells, anthocyanins are synthesized in the cytoplasm and then translocated into the central vacuole, by mechanisms yet to be fully characterized. The aim of this work was to determine whether a homologue of rat liver bilitranslocase is expressed in carnation petals, where it might play a role in the membrane transport of anthocyanins. The bromosulfophthalein-based assay of rat liver bilitranslocase transport activity was implemented in subcellular membrane fractions, leading to the identification of a bromosulfophthalein carrier (K(M) = 5.3 microm), which is competitively inhibited by cyanidine 3-glucoside (Ki = 51.6 microm) and mainly noncompetitively by cyanidin (Ki = 88.3 microm). Two antisequence antibodies against bilitranslocase inhibited this carrier. In analogy to liver bilitranslocase, one antibody identified a bilirubin-binding site (Kd = 1.7 nm) in the carnation carrier. The other antibody identified a high-affinity binding site for cyanidine 3-glucoside (Kd = 1.7 microm) on the carnation carrier only, and a high-affinity bilirubin-binding site (Kd = 0.33 nm) on the liver carrier only. Immunoblots showed a putative homologue of rat liver bilitranslocase in both plasma membrane and tonoplast fractions, isolated from carnation petals. Furthermore, only epidermal cells were immunolabeled in petal sections examined by microscopy. In conclusion, carnation petals express a homologue of rat liver bilitranslocase, with a putative function in the membrane transport of secondary metabolites.  相似文献   

10.
Rat liver canalicular plasma membranes were found to contain a 37-kDa protein that is immunologically cross-reactive with the dinitrophenyl glutathione-stimulated ATPase previously identified in human tissues. The protein, which was partially purified by affinity chromatography, exhibited ATPase activity dependent on dinitrophenyl glutathione, bilirubin ditaurate, and other dianionic compounds. The localization of this protein in the canalicular membrane and its measured enzymatic activity indicate that it is involved in the transport of glutathione derivatives and other dianionic organic compounds. A rat mutant in which the above transport activities are impaired contained the protein in amounts similar to those in a normal control.  相似文献   

11.
The dicarbonyl compounds, phenylgloxyl and 2,3-butanedione were used to demonstrate the presence of an essential arginine residue in the mechanism of the red beet (Beta vulgaris L.) plasma membrane ATPase. Treatment of the red beet ATPase with either of these reagents resulted in an inhibition of ATP hydrolytic activity protectable by the inclusion of either ATP or ADP during inhibitor incubation. Ligands of the ATP hydrolytic reaction also protected against phenylglyoxyl inhibition and affected the ability of ADP to protect against inhibition by this reagent. Kinetic analysis of 2,3-butanedione and phenylglyoxyl inhibition suggested the presence of a single arginine residue susceptible to attack by these reagents. As similar results with these arginine modification reagents were found for both the plasma membrane-associated and solubilized forms of the ATPase, it is apparent that the function of this arginyl moiety is not affected by detergent treatment and removal of the enzyme from the membrane.  相似文献   

12.
The hypothesis that insulin action involves a membrane proteolytic step was further explored, by using isolated rat adipocytes and liver plasma membranes. (1) The maximal insulin stimulation of 2-deoxyglucose transport and lipogenesis in fat-cells was selectively inhibited (73-88%) by N alpha-p-tosyl-L-lysine chloromethyl ketone (Tos-Lys-CH2Cl; active-site inhibitor of trypsin; 30-125 microM), p-nitrophenyl p'-guanidinobenzoate (active-site inhibitor of serine proteinases; 30-125 microM) and p-tosyl-L-arginine methyl ester (arginine ester substrate analogue of proteinases; 1-2 mM), under conditions where neither the basal rate of each metabolic process nor insulin binding nor cellular ATP content were affected. In contrast, N-acetyl-L-alanyl-L-alanyl-L-alanine methyl ester (alanine ester substrate analogue of proteinases; 1-2 mM) was ineffective. (2) Endoproteinase Arg-C (0.25-40 micrograms/ml) exerted dose-dependent insulin-like effects on both 2-deoxyglucose transport and lipogenesis in fat-cells, whereas endoproteinase Lys-C (5-100 micrograms/ml) was ineffective. The maximal activation by endoproteinase Arg-C of both processes (200 and 177% of control values respectively) was shown to occur under conditions where membrane integrity (assessed by measurement of lactate dehydrogenase leakage and passive glucose diffusion) was preserved. This effect was inhibited by Tos-Lys-CH2Cl (125 microM) and was not additive with the maximal insulin effect. (3) Insulin (1-100 ng/ml) produced a dose-dependent increase in the trichloroacetic acid-soluble 125I radioactivity released after a 30 min incubation at 37 degrees C of 125I-labelled liver plasma membranes, but was ineffective on 125I-labelled bovine serum albumin. Insulin effects on both radio-labelled proteins were reproduced by wheat-germ agglutinin (20 micrograms/ml), an insulin mimicker shown to act through the insulin receptor. These data provide further evidence for the hypothesis that insulin bioeffects involve the activation of a membrane serine proteinase with arginine specificity.  相似文献   

13.
The mechanism and specificity of amino-acid transport at the plasma membrane of Ricinus communis L. roots was investigated using membrane vesicles isolated by phase partitioning. The transport of glutamine, isoleucine, glutamic acid and aspartic acid was driven by both a pH gradient and a membrane potential (internally alkaline and negative), created artificially across the plasma membrane. This is consistent with transport via a proton symport. In contrast, the transport of the basic amino acids, lysine and arginine, was driven by a negative internal membrane potential but not by a pH gradient, suggesting that these amino acids may be taken up via a voltage-driven uniport. The energized uptake of all of the amino acids tested showed a saturable phase, consistent with carrier-mediated transport. In addition, the membrane-potential-driven transport of all the amino acids was greater at pH 5.5 than at pH 7.5, which suggests that there could be a direct pH effect on the carrier. Several amino-acid carriers could be resolved, based on competition studies: a carrier with a high affinity for a range of neutral amino acids (apart from asparagine) but with a low affinity for basic and acidic amino acids; a carrier which has a high affinity for a range of neutral amino acids except isoleucine and valine, but with a low affinity for basic and acidic amino acids; and a carrier which has a higher affinity for basic and some neutral amino acids but has a lower affinity for acidic amino acids. The existence of a separate carrier for acidic amino acids is discussed.Abbreviations PM plasma membrane - TPP+ tetraphenylphosphonium ion - pH pH gradient - membrane potential This work was supported by the Agricultural and Food Research Council and The Royal Society. We would like to thank Mrs. Sue Nelson for help with some of the membrane preparations.  相似文献   

14.
In order to characterize the mechanism for bilirubin transport in the liver, the uptake of bilirubin diglucuronide (BDG) into purified sinusoidal plasma membrane vesicles was investigated. BDG uptake was saturable, and was inhibited by sulfobromophthalein and unconjugated bilirubin, but was not affected by sodium taurocholate. BDG uptake was sodium-independent and was stimulated by intravesicular bilirubin or BDG (trans-stimulation). BDG transport showed strong potential sensitivity; vesicle inside-negative membrane potential created by different anion gradients inhibited BDG uptake whereas vesicle inside-positive membrane potential generated by potassium gradients and valinomycin markedly stimulated BDG transport. These data suggest that BDG, sulfobromophthalein, and probably unconjugated bilirubin share a common transporter in liver cells which is sodium independent, membrane-potential-dependent and capable of exchange. The direction of transport in vivo may be governed by the intracellular concentration of BDG and of other yet unidentified organic anions sharing this transporter.  相似文献   

15.
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation.  相似文献   

16.
1. Bicarbonate ions stimulate the transport of serine and alanine into isolated hepatocytes. 2. The effect of bicarbonate is to increase the Vmax. of the transport process without changing the apparent Km. 3. The intracellular pH was estimated from the distribution of the weak base methylamine and the weak acid 5,5'-dimethyloxazolidine-2,4-dione (DMO) across the plasma membrane. 4. The addition of bicarbonate to a cell suspension caused the internal pH to become more acid. 5. The initial rate of serine, alanine and glycine transport was a linear function of the initial difference in pH across the membrane. 6. It is concluded that bicarbonate activates the transport of these amino acids primarily by increasing the pH difference across the plasma membrane. 7. It is suggested that the uptake of serine together with Na+ ions occurs in exchange for H+ ions, which are translocated outwards on the same carrier system. Some preliminary evidence consistent with this model is presented.  相似文献   

17.
A linear hydrophobic peptide, (Code no. EMD 55068), a synthetic renin-antagonist, competitively inhibits the uptake of taurocholate and of another linear peptide (EMD 51921) but not of oleic acid, serine or thiamin hydrochloride into isolated rat liver cells. EMD 55068 was attached to a gel matrix at a position that is not involved in the protein ligand interaction. The gel matrix used did not interact nonspecifically with solubilized proteins from rat liver. The quantity of bound ligand was determined to be 3.6 mg/ml of gel matrix. In the fraction of EDTA extracted hydrophilic membrane-associated proteins, no binding proteins were detected. Affinity chromatography of integral plasma membrane proteins resulted in four protein bands with molecular masses of 46, 49, 53 and 56 kDa in SDS-PAGE. In contrast, solubilized plasma membrane proteins from AS-30D ascites hepatoma cells, which are unable to transport bile acids and linear peptides, did not bind specifically to the affinity matrix.  相似文献   

18.
The selective carboxymethylation by iodoacetate of Cys-46 in the active center of horse liver alcohol dehydrogenase has been shown to be mediated by interaction of the anionic reagent with the arginyl residue(s) previously shown to be responsible for binding NADH (L.G. Lange, J.F. Riordan, and B.L. Vallee (1974), Biochemistry 13, 4361). Thus, sequential and reversible chemical modification of arginine with butanedione and of cysteine with pmercuribenzoate demonstrate that the essential thiol groups are not affected by arginine modification. Importantly, the rate of incorporation of [14C]idoacetate into native horse liver alcohol dehydrogenase is ten times faster than that for the butanedione-modified enzyme. Moreover, as evidenced by peptide isolation, the radiolabel incorporated into the latter occurs at low levels in several different peptides as opposed to the single, strongly labeled CmCys-46 peptide obtained from the native enzyme. The demonstration that the arginyl residue(s) involved in coenzyme binding promotes enhanced reactivity of the active site thiol supports the general hypothesis that the spatial arrangement of structural features allowing expression of enzymatic function may also account for enhanced chemical reactivity of certain active site residues (B.L Vallee and J.F. Riordan (1969), Annu. Rev. Biochem. 38, 733).  相似文献   

19.
A model analysis of the process of carrier mediated membrane transport is presented, wherein the carrier is present in two forms of differing affinity for substrate. The two forms of carrier undergo interconversion by asymmetric metabolic reactions on each side of the membrane. From this model system expressions are derived for the steady-state distribution ratio for substrate, for the unidirectional fluxes of substrate and hence for the initial velocity of uptake of substrate, and for the effect of preloading cells upon the initial velocity of uptake of labeled substrate. These expressions are applied to published data for glycine transport in Ehrlich ascites tumor cells to obtain numerical values for the parameters of a concentrative membrane carrier system. Concentrative uptake is shown to be consequent to the differing affinities of the two forms of carrier. When the affinities of the two forms are equal, equilibrative uptake occurs. The model analysis is applied to the phenomena of metabolic and competitive inhibition.  相似文献   

20.
The arginine residue(s) necessary for tetrahydrofolate binding to sheep liver serine hydroxymethyltransferase were located by phenylglyoxal modification. The incorporation of [7-14C]phenylglyoxal indicated that 2 arginine residues were modified per subunit of the enzyme and the modification of these residues was prevented by tetrahydrofolate. In order to locate the sites of phenylglyoxal modification, the enzyme was reacted in the presence and absence of tetrahydrofolate using unlabeled and radioactive phenylglyoxal, respectively. The labeled phenylglyoxal-treated enzyme was digested with trypsin, and the radiolabeled peptides were purified by high-performance liquid chromatography on reversed-phase columns. Sequencing the tryptic peptides indicated that Arg-269 and Arg-462 were the sites of phenylglyoxal modification. Neither a spectrally discernible 495-nm intermediate (characteristic of the native enzyme when substrates are added) nor its enhancement by the addition of tetrahydrofolate, was observed with the phenylglyoxal-modified enzyme. There was no enhancement of the rate of the exchange of the alpha-proton of glycine upon addition of tetrahydrofolate to the modified enzyme as was observed with the native enzyme. These results demonstrate the requirement of specific arginine residues for the interaction of tetrahydrofolate with sheep liver serine hydroxymethyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号