首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
通过链霉素对南昌霉素 (Nanchangmycin)产生菌NS 41 80菌株孢子的致死浓度测定基础上 ,采用诱变剂甲基磺酸乙酯 (EMS)的不同诱变剂量对菌株孢子进行诱变处理 ,诱变处理的孢子涂布在含链霉素 ( 1 0 μg/mL)致死浓度的高氏平板上 ,获得了大量的链霉素抗性基因 (str)突变株。然后从 3,0 0 0株链霉素抗性基因 (str)突变株中通过初筛获得比诱变出发菌株产素能力提高 2 0 %以上的菌株 2 0 2株。再进一步通过摇瓶复筛 ,获得比出发菌株产素能力分别提高 1  相似文献   

2.
梅岭霉素高产菌株链霉素抗性基因突变株筛选   总被引:8,自引:0,他引:8  
通过链霉素对梅岭霉素 (Meilingmycin)产生菌南昌链霉菌NS 41 80菌株孢子致死浓度的测定 ,采用诱变剂EMS 4种不同剂量对菌株孢子进行诱变处理 ,然后涂布在含链霉素致死浓度的高氏平板上 ,获得了大量的链霉素抗性基因 (str)突变株。并进一步筛选到梅岭霉素高产菌株 80 5 1 1 2 2 1 ,在摇瓶条件下 ,只产梅岭霉素不产南昌霉素 ,梅岭霉素活性单位达 1 ,52 1 μg/mL,比NS 41 80的摇瓶发酵单位 855μg/mL提高了 77 9% ,该菌株连续传 6代进行摇瓶发酵  相似文献   

3.
采用微波结合链霉素抗性筛选法选育放线菌素D的高产菌株。通过考察链霉素对Streptomyces rubiginosohelvolus FIM-N31菌株孢子生长情况的影响确定链霉素致死浓度,出发菌株FIM-N31的孢子经微波辐照处理后,涂布在含链霉素致死浓度(50 μg/mL)的培养基平板上培养,获得了大量的链霉素抗性基因突变株。摇瓶发酵筛选突变株,结果获得一株遗传性状稳定的放线菌素D高产菌Str186,其产放线菌素D的能力比出发菌株提高了8倍以上。  相似文献   

4.
通过链霉素对小诺霉素产生菌 (Micromonospora purpura) 49 1 2 #菌株孢子致死浓度的测定 ,采用诱变剂EMS 3种不同诱变剂量对菌株的孢子进行诱变处理 ,诱变处理的孢子涂布在含链霉素致死浓度的改良高氏平板上 ,获得大量的链霉素抗性基因突变株 ,然后从链霉素抗性基因突变株进一步筛选小诺霉素高产菌株 ,获得小诺霉素菌株 49 1 2 3菌株。在摇瓶条件下 ,其产小诺霉素生物活性单位比出发菌株 49 1 2 #的摇瓶发酵单位提高了 40 %以上。小诺霉素的组分比由出发菌株的C2b∶C1a的 5∶5提高到 8∶2。C2b有效组分提高了 30 %;链霉素抗性基因突变与小诺霉素发酵单位突变之间 ,小诺霉素正突变率达到 40 %,负突变率达 2 6%,正突变大于负突变  相似文献   

5.
将经过20 mW激光辐照20 min的达托霉素(Daptomycin)生产菌株-玫瑰孢链霉菌(Streptomyces roseosporus)D-38的孢子悬液倾注在含有1.9λg/mL链霉素的高氏一号培养平板上。通过链霉素抗性法筛选获得了10%正变率的突变株,其中突变株LC-54摇瓶发酵单位为81.2 mg/L,比出发菌株提高了39%。  相似文献   

6.
链霉素抗性突变--纳他霉素高产菌株的选育研究   总被引:12,自引:0,他引:12  
应用链霉素抗性筛选法,将经过紫外线诱变处理的纳他霉素生产菌——褐黄孢链霉菌(Streptomyces gilvosporeus)ATC13326的孢子涂布在含有链霉素最小抑制浓度(0.6μg/mL)的培养基平板上,获得了122株链霉素抗性突变株。其中纳他霉素产量高于出发菌株的有13株,产量阳性效率达到10.6%,同时获得了产抗生素能力为出发菌株1.46倍的突变株SG-56。  相似文献   

7.
梅岭霉素产生菌抗药性突变标志诱变筛选模型的初步研究   总被引:3,自引:0,他引:3  
本文通过梅岭霉素 (Meilingmycin)产生菌南昌链霉菌NS 4 1 80菌株孢子对 6种抗生素敏感性测定 ,采用诱变剂EMS四种不同诱变剂量对菌株孢子进行诱变处理 ,诱变处理的孢子涂布在含致死浓度链霉素的高氏平板上。然后从抗药性突变标志菌株中进一步筛选梅岭霉素高产菌株。在 150 0多个抗药性突变株中通过初筛获得了比诱变出发菌株的产素能力提高 50 %以上菌株。通过诱变剂量分别与抗药性突变率和突变株产素产量的变势统计分析表明 ,菌株抗药性突变与产素突变密切相关 ,产素突变的EMS诱变剂量高于抗药性突变诱变剂量 ,在 0 .0 3mol/LEMS剂量作用下 ,菌株致死率为 99.4 3% ,抗药性突变率为 0 .0 4 4 0 % ,建立了梅岭霉素产生菌抗药性突变标志诱变推理性筛选模型。为南昌链霉菌高产菌种选育研究作了有益的尝试 ,并有助于其它链霉菌属的抗生素产生菌育种研究。  相似文献   

8.
本研究采用紫外诱变育种技术对一株产恩拉霉素抗真菌链霉菌(Streptomyces fungicidicus)F110进行了诱变处理,经链霉素抗性、利福霉素B抗性以及双重抗性筛选,共获得了132株抗生素抗性突变株,其中26株突变菌株的恩拉霉素产量与出发菌株相比均有明显提高。摇瓶发酵条件下,突变株SR93的恩拉霉素产量最高可达2 400μg/m L,与出发菌株相比提高了38%。传代结果表明:该突变株产素水平稳定,因此具备较好的开发及工业应用价值。  相似文献   

9.
采用化学诱变剂NTG结合链霉素抗性筛选法获得新霉素高产菌株。出发菌株费氏链霉菌(Streptomyces fradiae)FS1109的孢子悬液经不同剂量的化学诱变剂NTG处理后,涂布在含链霉素最小抑制浓度(3μg/m L)的培养基平板上培养,获得大量的链霉素抗性突变株。经影印法初筛和摇瓶发酵复筛,正突变率高于负突变率,获得一株遗传性状稳定的Streptomyces fradiae Str 63菌株,其新霉素生物活性单位比出发菌株提高了50%以上,且C组分较出发菌株的低。  相似文献   

10.
采用微波照射(MW)、紫外照射(UV)和MW+UV处理技术,对替考拉宁产生菌AT-92的孢子进行诱变,诱变处理的孢子悬液涂布在含替考拉宁致死浓度的培养基平板上培养,获得替考拉宁抗性突变株,通过摇瓶发酵对替考拉宁抗性基因突变株进行筛选,获得一株遗传性状稳定的替考拉宁高产菌AT 92-52-37菌株,其产替考拉宁能力比出发菌株的提高5倍。  相似文献   

11.
正Dear Editor,In December 2019, a novel human coronavirus caused an epidemic of severe pneumonia(Coronavirus Disease 2019,COVID-19) in Wuhan, Hubei, China(Wu et al. 2020; Zhu et al. 2020). So far, this virus has spread to all areas of China and even to other countries. The epidemic has caused 67,102 confirmed infections with 1526 fatal cases  相似文献   

12.
Curcumin is the yellow pigment of turmeric that interacts irreversibly forming an adduct with thioredoxin reductase (TrxR), an enzyme responsible for redox control of cell and defence against oxidative stress. Docking at both the active sites of TrxR was performed to compare the potency of three naturally occurring curcuminoids, namely curcumin, demethoxy curcumin and bis-demethoxy curcumin. Results show that active sites of TrxR occur at the junction of E and F chains. Volume and area of both cavities is predicted. It has been concluded by distance mapping of the most active conformations that Se atom of catalytic residue SeCYS498, is at a distance of 3.56 from C13 of demethoxy curcumin at the E chain active site, whereas C13 carbon atom forms adduct with Se atom of SeCys 498. We report that at least one methoxy group in curcuminoids is necessary for interation with catalytic residues of thioredoxin. Pharmacophore of both active sites of the TrxR receptor for curcumin and demethoxy curcumin molecules has been drawn and proposed for design and synthesis of most probable potent antiproliferative synthetic drugs.  相似文献   

13.
The young pistils in the melanthioid tribes, Hewardieae, Petrosavieae and Tricyrteae, are uniformly tricarpellate and syncarpous. They lack raphide idioblasts. All are multiovulate, with bitegmic ovules. The Petrosavieae are marked by the presence of septal glands and incomplete syncarpy. Tepals and stamens adhere to the ovary in the Hewardieae and the Petrosavieae but not in the Tricyrteae. Two vascular bundles occur in the stamens of the Hewartlieae and Tricyrtis latifolia. Ventral bundles in the upper part of the ovary of the Hewardieae are continuous with compound septal bundles and placental bundles in the lower part. Putative ventral bundles occur in the alternate position in the Tricyrteae and putative placental bundles in the opposite. position in the Petrosavieae. The dichtomously branched stigma in each carpel of the Tricyrteae is supplied by a bifurcated dorsal bundle.  相似文献   

14.
15.
Highlights
1. The N-terminal tail of histone H3 is specifically cleaved during EV71 infection.
2. Viral protease 3C is identified as a protease responsible for proteolytically processing the N-terminal H3 tail.
3. Our finding reveals a new epigenetic regulatory mechanism for Enterovirus 71 in virus-host interactions.  相似文献   

16.
Rasmussen’s encephalitis (RE) is a rare pediatric neurological disorder, and the exact etiology is not clear. Viral infection may be involved in the pathogenesis of RE, but conflicting results have reported. In this study, we evaluated the expression of both Epstein-Barr virus (EBV) and human herpes virus (HHV) 6 antigens in brain sections from 30 patients with RE and 16 control individuals by immunohistochemistry. In the RE group, EBV and HHV6 antigens were detected in 56.7% (17/30) and 50% (15/30) of individuals, respectively. In contrast, no detectable EBV and HHV6 antigen expression was found in brain tissues of the control group. The co-expression of EBV and HHV6 was detected in 20.0% (6/30) of individuals. In particular, a 4-year-old boy had a typical clinical course, including a medical history of viral encephalitis, intractable epilepsy, and hemispheric atrophy. The co-expression of EBV and HHV6 was detected in neurons and astrocytes in the brain tissue, accompanied by a high frequency of CD8+ T cells. Our results suggest that EBV and HHV6 infection and the activation of CD8+ T cells are involved in the pathogenesis of RE.  相似文献   

17.
18.
Shen  Jia-Yuan  Li  Man  Xie  Lyu  Mao  Jia-Rong  Zhou  Hong-Ning  Wang  Pei-Gang  Jiang  Jin-Yong  An  Jing 《中国病毒学》2021,36(1):145-148
正Dear Editor,Chikungunya virus (CHIKV), an arbovirus in the family of Togaviridae, genus Alphavirus, is transmitted by the A.aegyptii or A. albopictus mosquito, and causes disease in humans characterized by fever, rash, and arthralgia (Silva and Dermody 2017; Suhrbier 2019). It was first reported in 1953 in Tanzania, and caused only a few outbreaks and sporadic cases in Africa and Asia in last century. However, in the epidemic in 2004, CHIKV acquired mutations that conferred enhanced transmission by the A. albopictus mosquito(Schuffenecker et al. 2006). Since then, it has successively caused outbreaks in Africa, the Indian Ocean, South East Asia, the South America, and Europe (Zeller et al. 2016).  相似文献   

19.
In conclusion, the novel visual RT-LAMP assay is a simple, rapid, and sensitive approach for detection of SARS-CoV-2, and it is ready for application in primary care and community hospitals or health care centers, and even patients' own houses in response to the current SARS-CoV-2 epidemic because the assay does not require sophisticated equipment and skilled personnel. Furthermore, it is also ready to be used in fields for screening samples from wild animals and environments to facilitate the identification of potential intermediate hosts that mediate the cross-species transmission of SARS-CoV-2 from bats to humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号