首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
高效遗传转化技术是植物重要性状功能基因鉴定的前提和转基因育种的基础。随着纳米生物技术的发展,以纳米载体介导的植物转基因技术已显示出巨大的应用潜力。综述了国内外应用于植物纳米载体的类型、与外源基因的结合方式以及传输细胞的原理,重点阐述了影响纳米基因载体性能与转化效率的重要因素,以及纳米载体介导外源基因转化植物细胞的方法,分析了纳米载体介导法与其他转基因方法的特点和优势,并提出纳米载体介导的转化技术应加强稳定遗传转化、基因编辑与植物原位转化等方面探索研究,旨为植物遗传转化技术和方法提供新的思路。  相似文献   

2.
基因转移是利用物理、化学或生物手段将外源基因导入受体细胞,并使之表达的一种技术。采用基因转移技术培育的动植物就叫转基因动植物。基因转移技术为改造生物品种开辟了前景光明的新途径。把某些高产、抗逆或优良性状基因通过基因转移导入原来不具备这些性能的生物体内,达到改良品种的目的。  相似文献   

3.
外源基因在转基因动物中遗传和表达的稳定性   总被引:2,自引:0,他引:2  
Kong QR  Liu ZH 《遗传》2011,33(5):504-511
转基因技术经过近半个世纪的发展,已成为当今生物技术研究的热点。近10多年来,与核移植技术的结合,转基因效率大大提高,携带有不同外源基因的不同种类的转基因动物迅速增加。但是,成功获得转基因动物并不是转基因动物研究的最终目的,如何利用转基因技术为人类的需求服务才是科研人员始终面对的课题。在畜牧生产领域,通过转基因技术培育家畜新品种是转基因技术应用的重要体现,在我国这方面已经引起了广泛关注。但迄今为止,外源基因在转基因动物中遗传和表达的稳定性仍然是亟待解决的问题,究其原因,这主要与位置效应、外源基因的表观遗传学修饰和遗传效率相关,文章结合目前的研究进展和本实验室的研究结果,从这3方面阐述其作用机制,期望为转基因动物遗传育种向产业化的迈进提供一定的理论探讨。  相似文献   

4.
外源基因转化棉花育种研究的进展与应用   总被引:1,自引:1,他引:0  
棉花作为重要的经济作物,新品种的选育和应用对于促进棉花生产至关重要。通过转基因技术将外源基因转化棉花,是棉花育种的新手段。尤其是抗逆、抗除草剂、抗虫、抗病和提高棉花品质的转基因技术研究,有助于加速棉花新品种的培育。棉花的转基因技术主要包括农杆菌介导法、基因枪轰击法和花粉管通道法。利用不同的转基因技术在棉花外源基因遗传转化的育种研究中取得了明显成效,探讨外源基因转化棉花育种研究的进展与应用,为新疆陆地棉的转基因育种研究提供重要参考。  相似文献   

5.
香蕉转基因技术研究进展   总被引:1,自引:0,他引:1  
香蕉具有高度不育性 ,难以通过传统育种的方法进行新品种的培育和遗传改良 ,因此转基因技术的建立尤为重要。综述近年来香蕉转基因技术 ,如受体材料、转基因方法、载体的构建等方面的研究进展  相似文献   

6.
本研究主要探讨ipt基因对矮牵牛遗传转化不定芽诱导影响及拟南芥热激启动子hsp18.2驱动重组酶基因flp的热诱导外源基因删除表达载体在矮牵牛中的基因删除效果.本研究中将植物表达载体pBin-hsp18.2:flp-35S:ipt及对照载体pBin-hsp18.2:flp遗传转化矮牵牛,以获得转基因植株,分析比较不定芽的诱导和转基因植株进行的热激基因删除.研究结果表明,ipt基因可促进矮牵牛遗传转化过程中不定芽的诱导,其不定芽诱导率为21.5%,显著高于对照的8.7%.在44℃,6 h,热激6次的条件下,转基因矮牵牛植株表型恢复正常,经 GUS蛋白表达分析及PCR、RT-PCR检测,证明外源基因已经被删除.转基因矮牵牛基因删除效率最高可达43.8%.本研究为ipt基因在一些遗传转化困难植物转基因中的应用奠定了基础.  相似文献   

7.
磁性纳米基因载体是一种非病毒基因载体,经过功能性基团修饰后能够连接阳离子转染剂构建细胞转染系统。本文将磁转染技术结合常用的脂质体转染,形成了一种新型动物体细胞转染方法,即称脂质磁转染(Liposomal magnetofection,LMF)。这将为体细胞克隆培育转基因动物提供稳定遗传的细胞系。为构建脂质磁性纳米基因载体复合物系统,本研究利用一种磁性纳米基因载体通过分子自组装与脂质阳离子转染剂结合,用于携带外源基因转染动物体细胞。通过原子力显微镜(AFM)观测、ζ电位-粒度等分析表征手段,研究磁性纳米基因载体的形貌、粒径分布、负载及浓缩DNA的方式。结果表明,通过猪肾(PK)细胞的LMF实验,与脂质体(Lipofectamine2000)介导的转染比较,具有较高的转染率,更重要的是克服了脂质体转染瞬时表达的缺陷。MTT细胞毒性试验结果也显示该方法具有较低的细胞毒性。因此LMF是一种切实可行的高效低毒性的细胞转染方法。  相似文献   

8.
植酸及其盐类占土壤非有效态磷30%~40%,利用转基因技术结合常规育种手段培育能够分解利用植酸磷的作物新品种是解决这一问题的最新途径。本研究以农杆菌转化子叶节所获得的JL35-phyA为试材,采用PCR与RT-PCR进行目的基因检测,获得转基因阳性材料;随后将这些阳性材料与38个常规大豆杂交,实现phyA向不同大豆品种的转育。结果表明,利用农杆菌转化技术已将phyA转入吉林35,且基因在大豆根系能够正常转录表达,转基因株系的单株荚数、粒数、粒重及百粒重显著高于野生型,蛋白质和脂肪含量与野生型差异不显著;利用这些转基因株系,通过杂交转育获得F1阳性单株427个,涉及上述38个不同组合,说明目标基因phyA已转移到杂交后代;将F1阳性单株自交后筛选得到部分组合的阳性F2植株及F3子粒,经农艺性状考察,这些后代材料中存在丰富的遗传变异,并在杂交后代中选育出一些转有目标基因的优良株系,为今后培育转phyA大豆新品种(系)提供了一批重要的遗传资源。  相似文献   

9.
植酸及其盐类占土壤非有效态磷30%~40%,利用转基因技术结合常规育种手段培育能够分解利用植酸磷的作物新品种是解决这一问题的最新途径。本研究以农杆菌转化子叶节所获得的JL35-phyA为试材,采用PCR与RT-PCR进行目的基因检测,获得转基因阳性材料;随后将这些阳性材料与38个常规大豆杂交,实现phyA向不同大豆品种的转育。结果表明,利用农杆菌转化技术已将phyA转入吉林35,且基因在大豆根系能够正常转录表达,转基因株系的单株荚数、粒数、粒重及百粒重显著高于野生型,蛋白质和脂肪含量与野生型差异不显著;利用这些转基因株系,通过杂交转育获得F1阳性单株427个,涉及上述38个不同组合,说明目标基因phyA已转移到杂交后代;将F1阳性单株自交后筛选得到部分组合的阳性F2植株及F3子粒,经农艺性状考察,这些后代材料中存在丰富的遗传变异,并在杂交后代中选育出一些转有目标基因的优良株系,为今后培育转phyA大豆新品种(系)提供了一批重要的遗传资源。  相似文献   

10.
转基因技术已广泛用于水稻遗传改良的方方面面。现综述水稻转基因技术的发展历程及其发展趋势,同时对我国转基因水稻新品种培育及其监管审批体系进行简单介绍。  相似文献   

11.
基因枪和农杆菌介导的遗传转化是目前常用的两种单子叶植物遗传转化方法。载体的发展和改良是提高植物遗传转化效率的重要基础,RNA干扰载体和过表达载体是目前通过遗传转化研究植物基因功能的主要工具。Gateway克隆技术是一种基于lambda噬菌体特异位点重组特性的通用克隆技术,该技术可以将大批目的基因方便、快捷地连接到受体载体上。本文利用Gateway技术结合传统酶切、连接方法,构建了适用于单子叶植物基因枪和农杆菌转化的RNA干扰Gateway载体pAHC-PSK-RNAi、pClean-G185-RNAi和过表达Gateway载体pAHC-PSK-OE和pClean-G185-OE,为利用基因枪和农杆菌介导的遗传转化,在小麦和水稻等单子叶植物中进行规模化基因功能研究奠定了基础。  相似文献   

12.
Wheat transformation technology has progressed rapidly during the past decade. Initially, procedures developed for protoplast isolation and culture, electroporation- and polyethylene glycol (PEG)-induced DNA transfer enabled foreign genes to be introduced into wheat cells. The development of biolistic (microprojectile) bombardment procedures led to a more efficient approach for direct gene transfer. More recently, Agrobacterium-mediated gene delivery procedures, initially developed for the transformation of rice, have also been used to generate transgenic wheat plants. This review summarises the considerable progress in wheat transformation achieved during the last decade. An increase in food production is essential in order to sustain the increasing world population. This could be achieved by the development of higher yielding varieties with improved nutritional quality and tolerance to biotic and abiotic stresses. Although conventional breeding will continue to play a major role in increasing crop yield, laboratory-based techniques, such as genetic transformation to introduce novel genes into crop plants, will be essential in complementing existing breeding technologies. A decade ago, cereals were considered recalcitrant to transformation. Since then, a significant research effort has been focused on cereals because of their agronomic status, leading to improved genetic transformation procedures (Bommineni and Jauhar 1997). Initially, the genetic transformation of cereals relied on the introduction of DNA into protoplasts and the subsequent production of callus from which fertile plants were regenerated. More recently, major advances have been accomplished in the regeneration of fertile plants from a range of source tissues, providing an essential foundation for the generation of transgenic plants. This review summarises procedures, vectors and target tissues used for transformation, high-lights the limitations of current approaches and discusses future trends. The citation of references is limited, where possible, to the most relevant or recent reports.  相似文献   

13.
Plant biotechnology relies on two approaches for delivery and expression of heterologous genes in plants: stable genetic transformation and transient expression using viral vectors. Although much faster, the transient route is limited by low infectivity of viral vectors carrying average-sized or large genes. We have developed constructs for the efficient delivery of RNA viral vectors as DNA precursors and show here that Agrobacterium-mediated delivery of these constructs results in gene amplification in all mature leaves of a plant simultaneously (systemic transfection). This process, called "magnifection", can be performed on a large scale and with different plant species. This technology combines advantages of three biological systems (the transfection efficiency of A. tumefaciens, the high expression yield obtained with viral vectors, and the post-translational capabilities of a plant), does not require genetic modification of plants and is faster than other existing methods.  相似文献   

14.
Technology development is innovative to many aspects of basic and applied plant transgenic science. Plant genetic engineering has opened new avenues to modify crops, and provided new solutions to solve specific needs. Development of procedures in cell biology to regenerate plants from single cells or organized tissue, and the discovery of novel techniques to transfer genes to plant cells provided the prerequisite for the practical use of genetic engineering in crop modification and improvement. Plant transformation technology has become an adaptable platform for cultivar improvement as well as for studying gene function in plants. This success represents the climax of years of efforts in tissue culture improvement, in transformation techniques and in genetic engineering. Plant transformation vectors and methodologies have been improved to increase the efficiency of transformation and to achieve stable expression of transgenes in plants. This review provides a comprehensive discussion of important issues related to plant transformation as well as advances made in transformation techniques during three decades.  相似文献   

15.
利用DNA或RNA植物病毒作载体表达外源蛋白是近几年发展较快的一种新的遗传转化方式,它具有以下几个优点:表达量大,表达速度快,易于进行基因操作和接种以及适用对象广泛。已发展的四种载体构建策略包括:基因取代,基因插入,融合抗原和基因互补。植物病毒表达载体可以用于基因的重组、病毒的移动和基因功能的检测等基础性研究,也可用于商业上表达多种药用蛋白或疫苗。植物病毒表达载体的稳定性主要取决于存在同源序列而引起的基因重组。本文还对病毒载体的生物安全性进行了讨论。  相似文献   

16.
17.
农杆菌介导的转基因方法是目前植物遗传转化的重要方法之一。本文从农杆菌转化原理、菌株比较及载体发展入手,系统讨论了植物转化受体对转化效率的影响,同时分别综述了农杆菌介导转化技术在双子叶和单子叶植物转化应用中的最新进展。  相似文献   

18.
Modern agricultural technology and the introduction of new high-yielding varieties are largely eliminating the wide range of crop genetic diversity that has evolved during the five to ten thousand years since food plants were first domesticated. Related wild species are also on the decline because of new land use policies. These gene pools (or what is left of them) are generally spoken of as genetic resources, and are vitally needed in the creation of new crop varieties by plant breeders. Wild species and land races often furnish genes conferring resistance to diseases and pests and adaptation to environmental stresses which cannot be found in the modern crop varieties.
The study of genetic diversity of crops, its storage in gene banks or in natural reserves, its evaluation and enhancement, are briefly described. The genetic resources work of the Food and Agriculture Organisation of the United Nations (FAO) and other international agencies such as the International Board for Plant Genetic Resources (IBPGR) is outlined.  相似文献   

19.
Dhar MK  Kaul S  Kour J 《Plant cell reports》2011,30(5):799-806
Plant Biotechnology involves manipulation of genetic material to develop better crops. Keeping in view the challenges being faced by humanity in terms of shortage of food and other resources, we need to continuously upgrade the genomic technologies and fine tune the existing methods. For efficient genetic transformation, Agrobacterium-mediated as well as direct delivery methods have been used successfully. However, these methods suffer from many disadvantages especially in terms of transfer of large genes, gene complexes and gene silencing. To overcome these problems, recently, some efforts have been made to develop genetic transformation systems based on engineered plant chromosomes called minichromosomes or plant artificial chromosomes. Two approaches namely, “top-down” or “bottom-up” have been used for minichromosomes. The former involves engineering of the existing chromosomes within a cell and the latter de novo assembling of chromosomes from the basic constituents. While some success has been achieved using these chromosomes as vectors for genetic transformation in maize, however, more studies are needed to extend this technology to crop plants. The present review attempts to trace the genesis of minichromosomes and discusses their potential of development into plant artificial chromosome vectors. The use of these vectors in genetic transformation will greatly ameliorate the food problem and help to achieve the UN Millennium development goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号