首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A stable shuttle vector which replicates in Escherichia coli and Clostridium perfringens was constructed by ligating a 3.6-kilobase (kb) fragment of plasmid pBR322 with C. perfringens plasmid pHB101 (3.1 kb). The marker for this shuttle plasmid originated from the 1.3-kb chloramphenicol resistance gene of plasmid pHR106. The resulting shuttle vector, designated pAK201, is 8 kb in size and codes for resistance to 20 micrograms of chloramphenicol per ml in both E. coli and C. perfringens. Following shuttle vector construction in E. coli, plasmid pAK201 was transformed into E. coli HB101 and C. perfringens ATCC 3624A, using intact cell electroporation. The transformation frequencies were 10(6) and 10(4) transformants per microgram of DNA in E. coli and C. perfringens, respectively. Restriction enzyme analysis of the chimera isolated from transformants of both microorganisms suggested that the plasmids were identical. Reciprocal transformation experiments in E. coli and C. perfringens indicated no difference in transformation frequency. Plasmid pAK201 was stable in C. perfringens following repeated transfer in the absence of chloramphenicol pressure. The restriction map of plasmid pAK201 shows six unique cut sites which should be useful for future genetic analysis and C. perfringens gene library construction.  相似文献   

2.
A stable shuttle vector which replicates in Escherichia coli and Clostridium perfringens was constructed by ligating a 3.6-kilobase (kb) fragment of plasmid pBR322 with C. perfringens plasmid pHB101 (3.1 kb). The marker for this shuttle plasmid originated from the 1.3-kb chloramphenicol resistance gene of plasmid pHR106. The resulting shuttle vector, designated pAK201, is 8 kb in size and codes for resistance to 20 micrograms of chloramphenicol per ml in both E. coli and C. perfringens. Following shuttle vector construction in E. coli, plasmid pAK201 was transformed into E. coli HB101 and C. perfringens ATCC 3624A, using intact cell electroporation. The transformation frequencies were 10(6) and 10(4) transformants per microgram of DNA in E. coli and C. perfringens, respectively. Restriction enzyme analysis of the chimera isolated from transformants of both microorganisms suggested that the plasmids were identical. Reciprocal transformation experiments in E. coli and C. perfringens indicated no difference in transformation frequency. Plasmid pAK201 was stable in C. perfringens following repeated transfer in the absence of chloramphenicol pressure. The restriction map of plasmid pAK201 shows six unique cut sites which should be useful for future genetic analysis and C. perfringens gene library construction.  相似文献   

3.
Abstract The pre-shock incubation of cells plus DNA and the methylation state of plasmid DNA were found to play a role in the electroporation-based transformation of Clostridium perfringens 3626B. Following pre-shock incubation, the highest number of C. perfringens 3626B transformants was obtained when plasmid pGK201 was both dam+ dcm+ modified, while no transformants were obtained when pGK201 was not methylated or only dcm methylated. This is consistent with the observation that plasmid pGK201 was protected against digestion by C. perfringens 3626B cell-associated nucleases for up to 3 min when methylated by both methylases. C. perfringens 3626B was successfully transformed only within a narrow cell recovery rate window. The erm AM gene associated with pGK201 and pAK102 was found to integrate into the chromosome of C. perfringens strains 13A and 3626B.  相似文献   

4.
Clostridium perfringens 11268 CDR (Rifr Tcs), the strain transformed in our experiments, was generated by curing a spontaneous, rifampicin-resistant mutant of C. perfringens 11268 (Rifr Tcr). High-temperature growth yielded tetracycline-sensitive, rifampicin-resistant cells which no longer contained pCW3, a 42.8-kilobase plasmid. The tetracycline-sensitive, rod-shaped cell was then converted to an L-phase variant by growth in the presence of penicillin G (10 micrograms/ml) and 0.4 M sucrose. After several passages, the antibiotic was removed from the medium, and cells continued to grow as L-phase variants. Another large plasmid, pJU124 (38.8 kilobases), which confers tetracycline resistance, was used for transformation. Transformation of L-phase variants of C. perfringens 11268 CDR (Rifr Tcs) was mediated by polyethylene glycol. Transformation frequency is a nonlinear function of DNA concentration. Restriction analysis showed that the plasmid isolated from the transformants was identical to that supplied. Stable L-phase variants do not revert to rod-shaped cells, but autoplasts can be both transformed and reverted.  相似文献   

5.
A bacteriophage-plasmid hybrid (phagemid) designated pCAK1 was constructed by ligating 5-kbp Escherichia coli plasmid pAK102 (AprEmr) and the 6.6-kbp HaeIII-linearized replicative form of the CAK1 viruslike particle from Clostridium acetobutylicum NCIB 6444. Phagemid pCAK1 (11.6 kbp) replicated via the ColE1 replication origin derived from pAK102 in E. coli. Single-stranded DNA (ssDNA) molecules complexed with protein in a manner which protected ssDNA from nucleases were recovered from the supernatant of E. coli DH11S transformants containing pCAK1 in the absence of cell lysis. This suggests that the viral-strand DNA synthesis replication origin of CAK1 and associated gene expression are functional in E. coli DH11S. The single-stranded form of pCAK1 isolated from E. coli supernatant was transformed into E. coli DH5 alpha' or DH11S by electroporation. Isolation of ampicillin-resistant E. coli transformants following transformation suggests that the complementary-strand DNA synthesis replication origin of CAK1 is also functional in E. coli. The coat proteins associated with ssDNA of pCAK1 demonstrated sensitivity to proteinase K and various solvents (i.e., phenol and chloroform), similar to the results obtained previously with CAK1. Following phagemid construction in E. coli, pCAK1 was transformed into C. acetobutylicum ATCC 824 and C. perfringens 13 by intact cell electroporation. Restriction enzyme analysis of pCAK1 isolated from erythromycin-resistant transformants of both C. acetobutylicum and C. perfringens suggested that it was identical to that present in E. coli transformants.  相似文献   

6.
The copy number of the streptococcal plasmid pAM beta 1 (26.5 kb), and its deletion derivatives, pVA1 (11 kb) and pVA677 (7.6 kb) contained in Clostridium perfringens 3624A transformants was determined by incorporation of [methyl-3H]thymidine (4 muCi/ml) into chromosomal and plasmid DNA and sizing of the C. perfringens genome using transverse alternating field electrophoresis. Plasmids pAM beta 1, pVA1, and pVA677 were found to be present at 1.0, 97, and 216 copies/cell, respectively. 10.2, 54, and 96% of the initial pAM beta 1-, pVA1- and pVA677-containing transformants, respectively, remained resistant to erythromycin over 220 generations of growth. The results indicate a size-dependent relationship between plasmid stability and plasmid copy number in C. perfringens.  相似文献   

7.
P T Scott  J I Rood 《Gene》1989,82(2):327-333
A reliable and efficient method has been developed for the electroporation-mediated transformation of Clostridium perfringens with plasmid DNA. Transformation of vegetative cells of C. perfringens strain 13 with the 7.9-kb Escherichia coli-C. perfringens shuttle plasmid pHR 106 required pretreatment with lysostaphin (2 to 20 micrograms/ml) for 1 h at 37 degrees C. Cells harvested early in the logarithmic stage of growth were transformed more efficiently than cells at other growth phases. The transformation frequency increased with the DNA concentration, to a saturating level at 5 to 10 micrograms DNA/ml. The transformation frequency was proportional to the field strength and time constant of the electroporation pulse; however, the field strength was a far more important parameter. A cell density between 1 x 10(8) and 5 x 10(8) cells/ml proved to be optimal for transformation. The procedure was capable of generating up to 3.0 x 10(5) transformants per micrograms DNA. The potential value of the method for the cloning of C. perfringens genes was demonstrated by the cloning of the clostridial tetracycline-resistance determinant, tetP, from the E. coli recombinant plasmid pJIR71, into C. perfringens strain 13.  相似文献   

8.
Electroporation-induced transformation of intact cells of Clostridium perfringens 3624A with plasmids pAMB1 and pHR106 resulted in 3.8 X 10(-5) and 4.2 X 10(-4) transformants per viable cell, respectively. With respect to shuttle plasmid pHR106, these values represent a greater than 100-fold increase in transformation frequency when compared with the values reported with polyethylene glycol-induced L-phase variants.  相似文献   

9.
Electroporation-induced transformation of intact cells of Clostridium perfringens 3624A with plasmids pAMB1 and pHR106 resulted in 3.8 X 10(-5) and 4.2 X 10(-4) transformants per viable cell, respectively. With respect to shuttle plasmid pHR106, these values represent a greater than 100-fold increase in transformation frequency when compared with the values reported with polyethylene glycol-induced L-phase variants.  相似文献   

10.
Bac. subtilis 168 (BD-25) cells were infected with DNA of plasmide R1drd19 isolated from E. coli strain; transformants resistant to streptomycin (500 microgram/ml) and kanamycin (40 microgram/ml) appeared with the frequency of 2.10(-6). These transformants retained resistance to the mentioned antibiotics stably. A satellite DNA peak was revealed in centrifugation in the density gradient of cesium chloride with ethidium bromide. It was possible to infect cells of Bac. subtilis 168 (BD-25) with plasmide DNA isolated from the transformants. Plasmide transduction with the aid of phages AR9 and PBSI multiplied on the transformant strains was also effected. Physico-chemical analysis of the transformed plasmide DNA was conducted; its molecular weight was determined.  相似文献   

11.
A transformation system for Enterococcus faecalis was developed which uses untreated (i.e., non-protoplasted) cells and the electroporation technique. The optimized protocol resulted in transformation efficiencies of up to 4 x 10(6) transformants per microgram of plasmid DNA. All strains of E. faecalis tested could be transformed by this method, albeit with differing transformation efficiencies. Using the protocol optimized for E. faecalis we successfully transformed Enterococcus faecium, E. hirae, E. malodoratus and E. mundtii.  相似文献   

12.
S F Park  G S Stewart 《Gene》1990,94(1):129-132
A procedure has been developed for electroporation-mediated transformation of Listeria monocytogenes with plasmid DNA. The method was optimized for intact cells of L. monocytogenes 23074 by determining the effects of field strength, cell density, and plasmid DNA topology. Transformation efficiencies were dramatically increased when cells were treated with penicillin. Optimum frequencies of transformation (4 x 10(6) transformants/microgram DNA) were obtained when cells were grown in 10 micrograms/ml of penicillin G and electroporated at a field strength of 10 kV/cm. Using this procedure, transformation of relaxed plasmid DNA from ligation reactions provided 1 x 10(4) transformants/microgram DNA, allowing direct molecular cloning of DNA into this organism.  相似文献   

13.
Improved method for electroporation of Staphylococcus aureus   总被引:19,自引:0,他引:19  
We have developed a significantly improved method for the electroporation of plasmid DNA into Staphylococcus aureus. The highest transformation efficiency achieved with this procedure was 4.0 x 10(8) transformants per microgram of plasmid pSK265 DNA. This represents a 530-fold improvement over the previously reported optimum efficiency of 7.5 x 10(5) transformants per microgram of plasmid DNA after electroporation of S. aureus cells [9]. Identical results were obtained when electrocompetent cells, which had been stored frozen at -80 degrees C, were used. The improved efficiency is due primarily to the use of a modified medium (designated as B2 medium) and secondarily to the use of 0.1-cm cuvettes. Several other plasmids (pI258, pMH109, and pSK270) were also electrotransformed into competent cells using our procedure, and for each plasmid, the transformation efficiency was significantly reduced compared to that observed when pSK265 DNA was used. With respect to plasmid pI258, the transformation efficiency was 3500-fold higher than that reported previously for transformation of this plasmid into S. aureus RN4220 [9]. The optimized electroporation procedure was less successful in transforming other staphylococci. Electrocompetent cells of S. aureus ATCC 29213 and S. epidermidis ATCC 12228 produced 5.5 x 10(5) and 5 x 10(3) transformants per microgram of pSK265 DNA, respectively.  相似文献   

14.
Wu S  Letchworth GJ 《BioTechniques》2004,36(1):152-154
Transformation efficiencies for Pichia pastoris are usually several orders of magnitude below those for other yeast. We report here that pretreatment of P. pastoris with 0.1 M lithium acetate (LiAc) and 10 mM dithiothreitol (DTT) before electroporation increased transformation efficiency approximately 150-fold. DTT alone enhanced the transformation efficiency up to 20-fold, but LiAc alone had little effect. Cultures grown to 1.15-2.6 A at 600 nm had higher transformation efficiencies than younger or older cultures. A cell concentration of 10(10)/mL gave the highest efficiencies. Digestion of pPIC9K within the AOX1 gene with Sacl gave efficiencies approximately 30 times higher than digestion in other genes with other enzymes. Given the optimization of these factors, the highest transformation efficiency was obtained with instrument settings of 1.5 kV, 25 microF, and 186 omega. The transformation efficiency at optimal conditions reached 4 x 10(6) transformants/microgram DNA with pPIC9K. A maximum of 2.6 x 10(5) transformants was produced when 1 microgram of pPIC9K DNA was used.  相似文献   

15.
E Essich  S E Stevens  Jr    R D Porter 《Journal of bacteriology》1990,172(4):1916-1922
Chromosomal transformation of Agmenellum quadruplicatum PR-6 (= Synechococcus sp. strain 7002) was characterized for phenotypic expression, for exposure time to DNA, and for dependence on DNA concentration with regard to Rifr donor DNA. Exponentially growing cells of PR-6 were competent for chromosomal transformation. Competence decreased in cells in the stationary phase of growth or in cells deprived of a nitrogen source. Dark incubation of cells before exposure to donor DNA also decreased competence. Homologous Rifr and Strr DNA and heterologous Escherichia coli W3110 DNA were used in DNA-DNA competition studies, which clearly showed that DNA binding by PR-6 was nonspecific. DNA binding and uptake by PR-6 exhibited single-hit kinetics. Single-stranded DNA failed to transform competent cells of PR-6, and DNA eclipse was not observed, suggesting that double-stranded DNA was the substrate for the binding and uptake reactions during the transformation of PR-6. A significant improvement in transformation frequency was achieved by increasing the nitrate content of the culture medium and by lowering the temperature at which cells were exposed to donor DNA from 39 degrees C (the optimal temperature for growth) to 30 degrees C.  相似文献   

16.
The chimeric plasmid pBN183 was first constructed in Escherichia coli by ligating the BamHI-digested E. coli plasmid pBR322 and a Bg/II-linearized streptococcal plasmid, pNZ18. The pBN183 transformed E. coli to ApR at a frequency of (8.2 +/- 1.2) x 10(5) colony forming units (CFU)/microgram DNA. Electrotransformation of Streptococcus thermophilus with pBN183 yielded CmR, ApS clones at a frequency of (2.6 +/- 0.3) x 10(1) CFU/microgram DNA. Plasmid screening with pBN183-transformed S. thermophilus clones revealed that ca. 70% of these transformants contained deleted plasmids. Plasmid pBN183A, a pBN183 deletion mutant lacking one copy of a tandemly arranged, highly homologous DNA sequence, was isolated for further study. It transformed E. coli to ApR and S. thermophilus to CmR with frequencies of (4.8 +/- 0.1) x 10(5) and (8.1 +/- 0.2) x 10(2) CFU/microgram DNA, respectively. Screening of S. thermophilus transformants did not show the presence of deleted plasmids. Based on the structure of pBN183A, a new shuttle plasmid, pDBN183, was constructed from pBN183 by removal of the small (1.2 kb) Sa/I fragment. Transformation frequencies of pDBN183 were (5.0 +/- 1.3) x 10(5) and (4.6 +/- 0.2) x 10(2) CFU/microgram DNA with E. coli and S. thermophilus, respectively. In contrast to the parent pBN183, only 17% of the pDBN183-transformed S. thermophilus contained deleted plasmids. Plasmid copy numbers of the three vectors in E. coli were estimated at 17-18 per chromosome. The three plasmids conferred ApR and CmR to E. coli, but only CmR to S. thermophilus. The insertion of a Streptomyces cholesterol oxidase gene (choA) into pDBN183 did not affect the plasmid's stability in Lactobacillus casei, but resulted in deletion of the recombinant DNA in S. thermophilus.  相似文献   

17.
Transformation of Clostridium perfringens L forms with shuttle plasmid DNA   总被引:1,自引:0,他引:1  
L-form (L-phase) cultures of Clostridium perfringens were tested for their transformability with plasmid DNA. Three L-form strains were transformable, but one, strain L-13, was superior to the others. This strain was easily and reproducibly transformed with previously described shuttle vectors which were derived from either C. perfringens or Escherichia coli. Strain L-13 was transformable by a variety of methods, and a new micromethod worked well under both aerobic and anaerobic conditions. The maximal number of transformants was attained after strain L-13 was exposed for 4 h to the transforming DNA and polyethylene glycol. Viable counts determined in tubes of semisolid brain heart infusion medium containing 10% sucrose, with or without 2 micrograms of tetracycline per ml, showed a transformation rate of 3.9 X 10(-5) (transformants per viable cells).  相似文献   

18.
19.
Intact cells of Bradyrhizobium japonicum USDA 110 were transformed with a 30-kilobase plasmid to efficiencies of 10(6) to 10(7) transformants per microgram by high-voltage electroporation. The technique was reliable and simple, with single colonies arising from transformed cells within 5 days of antibiotic selection. Plasmid DNA from B. japonicum transformed the Bradyrhizobium (Arachis) sp. with high efficiency, while the same plasmid extracted from Escherichia coli transformed B. japonicum at very low efficiency. The electrical conditions that resulted in the highest efficiencies were high voltage (10.5 to 12.5 kV/cm) and short pulse length (6 to 7 ms). A linear increase in the number of transformants was observed as DNA concentration was increased over 4 orders of magnitude; saturation appeared to begin between 120 ng/ml and 1.2 micrograms/ml. This novel method of transformation should enhance B. japonicum genetic research by providing a valuable alternative to conjugal mating, which is currently the only efficient, widely used means of introducing DNA into this organism.  相似文献   

20.
L-form (L-phase) cultures of Clostridium perfringens were tested for their transformability with plasmid DNA. Three L-form strains were transformable, but one, strain L-13, was superior to the others. This strain was easily and reproducibly transformed with previously described shuttle vectors which were derived from either C. perfringens or Escherichia coli. Strain L-13 was transformable by a variety of methods, and a new micromethod worked well under both aerobic and anaerobic conditions. The maximal number of transformants was attained after strain L-13 was exposed for 4 h to the transforming DNA and polyethylene glycol. Viable counts determined in tubes of semisolid brain heart infusion medium containing 10% sucrose, with or without 2 micrograms of tetracycline per ml, showed a transformation rate of 3.9 X 10(-5) (transformants per viable cells).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号