首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a new finite‐volume method for calculating complex flows on non‐uniform meshes. This method is designed to be highly compact and to accurately capture all discontinuities that may arise within the solution of a nonlinear hyperbolic system. In the first step, we devise a fourth‐degree Hermite polynomial to interpolate the solution. The coefficients defining this polynomial are calculated by using a least‐square method. To introduce monotonicity conditions within the procedure, two constraints are added into the least‐square system. Those constraints are derived by locally matching the high‐order Hermite polynomial with a low‐order TVD polynomial. To emulate these constraints only in regions of discontinuities, data‐depending weights are defined; these weights are based upon normalized indicators of smoothness of the solution and are parameterized by an O(1) quantity. The reconstruction so generated is highly compact and is fifth‐order accurate when the solution is smooth; this reconstruction becomes first order in regions of discontinuities. In the second step, this reconstruction is inserted in an HLL approximate Riemann solver. This solver is designed to correctly capture all discontinuities that may arise into the solution. To this aim, we introduce the contribution of a possible contact discontinuity into the HLL Riemann solver. Thus, a spatially fifth‐order non‐oscillatory method is generated. This method evolves in time the solution and its first derivative. In a one‐dimensional context, a linear spectral analysis and extensive numerical experiments make it possible to assess the robustness and the advantages of the method in computing multi‐scale problems with embedded discontinuities. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
On unstructured meshes, the cell‐centered finite volume (CCFV) formulation, where the finite control volumes are the mesh elements themselves, is probably the most used formulation for numerically solving the two‐dimensional nonlinear shallow water equations and hyperbolic conservation laws in general. Within this CCFV framework, second‐order spatial accuracy is achieved with a Monotone Upstream‐centered Schemes for Conservation Laws‐type (MUSCL) linear reconstruction technique, where a novel edge‐based multidimensional limiting procedure is derived for the control of the total variation of the reconstructed field. To this end, a relatively simple, but very effective modification to a reconstruction procedure for CCFV schemes, is introduced, which takes into account geometrical characteristics of computational triangular meshes. The proposed strategy is shown not to suffer from loss of accuracy on grids with poor connectivity. We apply this reconstruction in the development of a second‐order well‐balanced Godunov‐type scheme for the simulation of unsteady two‐dimensional flows over arbitrary topography with wetting and drying on triangular meshes. Although the proposed limited reconstruction is independent from the Riemann solver used, the well‐known approximate Riemann solver of Roe is utilized to compute the numerical fluxes, whereas the Green–Gauss divergence formulation for gradient computations is implemented. Two different stencils for the Green–Gauss gradient computations are implemented and critically tested, in conjunction with the proposed limiting strategy, on various grid types, for smooth and nonsmooth flow conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we present a class of high‐order accurate cell‐centered arbitrary Lagrangian–Eulerian (ALE) one‐step ADER weighted essentially non‐oscillatory (WENO) finite volume schemes for the solution of nonlinear hyperbolic conservation laws on two‐dimensional unstructured triangular meshes. High order of accuracy in space is achieved by a WENO reconstruction algorithm, while a local space–time Galerkin predictor allows the schemes to be high order accurate also in time by using an element‐local weak formulation of the governing PDE on moving meshes. The mesh motion can be computed by choosing among three different node solvers, which are for the first time compared with each other in this article: the node velocity may be obtained either (i) as an arithmetic average among the states surrounding the node, as suggested by Cheng and Shu, or (ii) as a solution of multiple one‐dimensional half‐Riemann problems around a vertex, as suggested by Maire, or (iii) by solving approximately a multidimensional Riemann problem around each vertex of the mesh using the genuinely multidimensional Harten–Lax–van Leer Riemann solver recently proposed by Balsara et al. Once the vertex velocity and thus the new node location have been determined by the node solver, the local mesh motion is then constructed by straight edges connecting the vertex positions at the old time level tn with the new ones at the next time level tn + 1. If necessary, a rezoning step can be introduced here to overcome mesh tangling or highly deformed elements. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, which therefore makes an additional remapping stage unnecessary, as the ALE fluxes already properly take into account the rezoned geometry. In this sense, our scheme falls into the category of direct ALE methods. Furthermore, the geometric conservation law is satisfied by the scheme by construction. We apply the high‐order algorithm presented in this paper to the Euler equations of compressible gas dynamics as well as to the ideal classical and relativistic magnetohydrodynamic equations. We show numerical convergence results up to fifth order of accuracy in space and time together with some classical numerical test problems for each hyperbolic system under consideration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A Godunov method is proposed for the computation of open‐channel flows in conditions of rapid bed erosion and intense sediment transport. Generalized shallow water equations govern the evolution of three distinct interfaces: the water free‐surface, the boundary between pure water and a sediment transport layer, and the morphodynamic bottom profile. Based on the HLL scheme of Harten, Lax and Van Leer (1983), a finite volume numerical solver is constructed, then extended to second‐order accuracy using Strang splitting and MUSCL extrapolation. Lateralisation of the momentum flux is adopted to handle the non‐conservative product associated with bottom slope. Computational results for erosional dam‐break waves are compared with experimental measurements and semi‐analytical Riemann solutions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Boussinesq models describe the phase‐resolved hydrodynamics of unbroken waves and wave‐induced currents in shallow coastal waters. Many enhanced versions of the Boussinesq equations are available in the literature, aiming to improve the representation of linear dispersion and non‐linearity. This paper describes the numerical solution of the extended Boussinesq equations derived by Madsen and Sørensen (Coastal Eng. 1992; 15 :371–388) on Cartesian cut‐cell grids, the aim being to model non‐linear wave interaction with coastal structures. An explicit second‐order MUSCL‐Hancock Godunov‐type finite volume scheme is used to solve the non‐linear and weakly dispersive Boussinesq‐type equations. Interface fluxes are evaluated using an HLLC approximate Riemann solver. A ghost‐cell immersed boundary method is used to update flow information in the smallest cut cells and overcome the time step restriction that would otherwise apply. The model is validated for solitary wave reflection from a vertical wall, diffraction of a solitary wave by a truncated barrier, and solitary wave scattering and diffraction from a vertical circular cylinder. In all cases, the model gives satisfactory predictions in comparison with the published analytical solutions and experimental measurements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
A high‐resolution numerical scheme based on the MUSCL–Hancock approach is developed to solve unsteady compressible two‐phase dilute viscous flow. Numerical considerations for the development of the scheme are provided. Several solvers for the Godunov fluxes are tested and the results lead to the choice of an exact Riemann solver adapted for both gaseous and dispersed phases. The accuracy of the scheme is proven step by step through specific test cases. These simulations are for one‐phase viscous flows over a flat plate in subsonic and supersonic regimes, unsteady flows in a low‐pressure shock tube, two‐phase dilute viscous flows over a flat plate and, finally, two‐phase unsteady viscous flows in a shock tube. The results are compared with well‐established analytical and numerical solutions and very good agreement is achieved. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
A finite‐volume multi‐stage (FMUSTA) scheme is proposed for simulating the free‐surface shallow‐water flows with the hydraulic shocks. On the basis of the multi‐stage (MUSTA) method, the original Riemann problem is transformed to an independent MUSTA mesh. The local Lax–Friedrichs scheme is then adopted for solving the solution of the Riemann problem at the cell interface on the MUSTA mesh. The resulting first‐order monotonic FMUSTA scheme, which does not require the use of the eigenstructure and the special treatment of entropy fixes, has the generality as well as simplicity. In order to achieve the high‐resolution property, the monotonic upstream schemes for conservation laws (MUSCL) method are used. For modeling shallow‐water flows with source terms, the surface gradient method (SGM) is adopted. The proposed schemes are verified using the simulations of six shallow‐water problems, including the 1D idealized dam breaking, the steady transcritical flow over a hump, the 2D oblique hydraulic jump, the circular dam breaking and two dam‐break experiments. The simulated results by the proposed schemes are in satisfactory agreement with the exact solutions and experimental data. It is demonstrated that the proposed FMUSTA schemes have superior overall numerical accuracy among the schemes tested such as the commonly adopted Roe and HLL schemes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The Riemann solver is the fundamental building block in the Godunov‐type formulation of many nonlinear fluid‐flow problems involving discontinuities. While existing solvers are obtained either iteratively or through approximations of the Riemann problem, this paper reports an explicit analytical solution to the exact Riemann problem. The present approach uses the homotopy analysis method to solve the nonlinear algebraic equations resulting from the Riemann problem. A deformation equation defines a continuous variation from an initial approximation to the exact solution through an embedding parameter. A Taylor series expansion of the exact solution about the embedding parameter provides a series solution in recursive form with the initial approximation as the zeroth‐order term. For the nonlinear shallow‐water equations, a sensitivity analysis shows fast convergence of the series solution and the first three terms provide highly accurate results. The proposed Riemann solver is implemented in an existing finite‐volume model with a Godunov‐type scheme. The model correctly describes the formation of shocks and rarefaction fans for both one and two‐dimensional dam‐break problems, thereby verifying the proposed Riemann solver for general implementation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
A hybrid scheme composed of finite‐volume and finite‐difference methods is introduced for the solution of the Boussinesq equations. While the finite‐volume method with a Riemann solver is applied to the conservative part of the equations, the higher‐order Boussinesq terms are discretized using the finite‐difference scheme. Fourth‐order accuracy in space for the finite‐volume solution is achieved using the MUSCL‐TVD scheme. Within this, four limiters have been tested, of which van‐Leer limiter is found to be the most suitable. The Adams–Basforth third‐order predictor and Adams–Moulton fourth‐order corrector methods are used to obtain fourth‐order accuracy in time. A recently introduced surface gradient technique is employed for the treatment of the bottom slope. A new model ‘HYWAVE’, based on this hybrid solution, has been applied to a number of wave propagation examples, most of which are taken from previous studies. Examples include sinusoidal waves and bi‐chromatic wave propagation in deep water, sinusoidal wave propagation in shallow water and sinusoidal wave propagation from deep to shallow water demonstrating the linear shoaling properties of the model. Finally, sinusoidal wave propagation over a bar is simulated. The results are in good agreement with the theoretical expectations and published experimental results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
A computationally efficient, high‐resolution numerical model of shallow flow hydrodynamics is described, based on dynamically adaptive quadtree grids. The numerical model solves the two‐dimensional non‐linear shallow water equations by means of an explicit second‐order MUSCL‐Hancock Godunov‐type finite volume scheme. Interface fluxes are evaluated using an HLLC approximate Riemann solver. Cartesian cut cells are used to improve the fit to curved boundaries. A ghost‐cell immersed boundary method is used to update flow information in the smallest cut cells and overcome the time step restriction that would otherwise apply. The numerical model is validated through simulations of reflection of a surge wave at a wall, a low Froude number potential flow past a circular cylinder, and the shock‐like interaction between a bore and a circular cylinder. The computational efficiency is shown to be greatly improved compared with solutions on a uniform structured grid implemented with cut cells. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
An upstream flux‐splitting finite‐volume (UFF) scheme is proposed for the solutions of the 2D shallow water equations. In the framework of the finite‐volume method, the artificially upstream flux vector splitting method is employed to establish the numerical flux function for the local Riemann problem. Based on this algorithm, an UFF scheme without Jacobian matrix operation is developed. The proposed scheme satisfying entropy condition is extended to be second‐order‐accurate using the MUSCL approach. The proposed UFF scheme and its second‐order extension are verified through the simulations of four shallow water problems, including the 1D idealized dam breaking, the oblique hydraulic jump, the circular dam breaking, and the dam‐break experiment with 45° bend channel. Meanwhile, the numerical performance of the UFF scheme is compared with those of three well‐known upwind schemes, namely the Osher, Roe, and HLL schemes. It is demonstrated that the proposed scheme performs remarkably well for shallow water flows. The simulated results also show that the UFF scheme has superior overall numerical performances among the schemes tested. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Two‐dimensional shallow water models with porosity appear as an interesting path for the large‐scale modelling of floodplains with urbanized areas. The porosity accounts for the reduction in storage and in the exchange sections due to the presence of buildings and other structures in the floodplain. The introduction of a porosity into the two‐dimensional shallow water equations leads to modified expressions for the fluxes and source terms. An extra source term appears in the momentum equation. This paper presents a discretization of the modified fluxes using a modified HLL Riemann solver on unstructured grids. The source term arising from the gradients in the topography and in the porosity is treated in an upwind fashion so as to enhance the stability of the solution. The Riemann solver is tested against new analytical solutions with variable porosity. A new formulation is proposed for the macroscopic head loss in urban areas. An application example is presented, where the large scale model with porosity is compared to a refined flow model containing obstacles that represent a schematic urban area. The quality of the results illustrates the potential usefulness of porosity‐based shallow water models for large scale floodplain simulations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, a multigrid algorithm is developed for the third‐order accurate solution of Cauchy–Riemann equations discretized in the cell‐vertex finite‐volume fashion: the solution values stored at vertices and the residuals defined on triangular elements. On triangular grids, this results in a highly overdetermined problem, and therefore we consider its solution that minimizes the residuals in the least‐squares norm. The standard second‐order least‐squares scheme is extended to third‐order by adding a high‐order correction term in the residual. The resulting high‐order method is shown to give sufficiently accurate solutions on relatively coarse grids. Combined with a multigrid technique, the method then becomes a highly accurate and efficient solver. We present some results to demonstrate its accuracy and efficiency, including both structured and unstructured triangular grids. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
A three‐dimensional Cartesian cut cell method is described for modelling compressible flows around complex geometries, which may be either static or in relative motion. A background Cartesian mesh is generated and any solid bodies cut out of it. Accurate representation of the geometry is achieved by employing different types of cut cell. A modified finite volume solver is used to deal with boundaries that are moving with respect to the stationary background mesh. The current flow solver is an unsplit MUSCL–Hancock method of the Godunov type, which is implemented in conjunction with a cell‐merging technique to maintain numerical stability in the presence of arbitrarily small cut cells and to retain strict conservation at moving boundaries. The method is applied to some steady and unsteady compressible flows involving both static and moving bodies in three dimensions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
An approximate‐state Riemann solver for the solution of hyperbolic systems of conservation laws with source terms is proposed. The formulation is developed under the assumption that the solution is made of rarefaction waves. The solution is determined using the Riemann invariants expressed as functions of the components of the flux vector. This allows the flux vector to be computed directly at the interfaces between the computational cells. The contribution of the source term is taken into account in the governing equations for the Riemann invariants. An application to the water hammer equations and the shallow water equations shows that an appropriate expression of the pressure force at the interface allows the balance with the source terms to be preserved, thus ensuring consistency with the equations to be solved as well as a correct computation of steady‐state flow configurations. Owing to the particular structure of the variable and flux vectors, the expressions of the fluxes are shown to coincide partly with those given by the HLL/HLLC solver. Computational examples show that the approximate‐state solver yields more accurate solutions than the HLL solver in the presence of discontinuous solutions and arbitrary geometries. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, an algorithm for chemical non‐equilibrium hypersonic flow is developed based on the concept of energy relaxation method (ERM). The new system of equations obtained are studied using finite volume method with Harten–Lax–van Leer scheme for contact (HLLC). The original HLLC method is modified here to account for additional species and split energy equations. Higher order spatial accuracy is achieved using MUSCL reconstruction of the flow variables with van Albada limiter. The thermal equilibrium is considered for the analysis and the species data are generated using polynomial correlations. The single temperature model of Dunn and Kang is used for chemical relaxation. The computed results for a flow field over a hemispherical cylinder at Mach number of 16.34 obtained using the present solver are found to be promising and computationally (25%) more efficient. The present solver captures physically correct solution as the entropy conditions are satisfied automatically during the computations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
A robust, well‐balanced, unstructured, Godunov‐type finite volume model has been developed in order to simulate two‐dimensional dam‐break floods over complex topography with wetting and drying. The model is based on the nonlinear shallow water equations in hyperbolic conservation form. The inviscid fluxes are calculated using the HLLC approximate Riemann solver and a second‐order spatial accuracy is achieved by implementing the MUSCL reconstruction technique. To prevent numerical oscillations near shocks, slope‐limiting techniques are used for controlling the total variation of the reconstructed field. The model utilizes an explicit two‐stage Runge–Kutta method for time stepping, whereas implicit treatments for friction source terms. The novelties of the model include the flux correction terms and the water depth reconstruction method both for partially and fully submerged cells, and the wet/dry front treatments. The proposed flux correction terms combined with the water depth reconstruction method are necessary to balance the bed slope terms and flux gradient in the hydrostatical steady flow condition. Especially, this well‐balanced property is also preserved in partially submerged cells. It is found that the developed wet/dry front treatments and implicit scheme for friction source terms are stable. The model is tested against benchmark problems, laboratory experimental data, and realistic application related to dam‐break flood wave propagation over arbitrary topography. Numerical results show that the model performs satisfactorily with respect to its effectiveness and robustness and thus has bright application prospects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
We extend the explicit in time high‐order triangular discontinuous Galerkin (DG) method to semi‐implicit (SI) and then apply the algorithm to the two‐dimensional oceanic shallow water equations; we implement high‐order SI time‐integrators using the backward difference formulas from orders one to six. The reason for changing the time‐integration method from explicit to SI is that explicit methods require a very small time step in order to maintain stability, especially for high‐order DG methods. Changing the time‐integration method to SI allows one to circumvent the stability criterion due to the gravity waves, which for most shallow water applications are the fastest waves in the system (the exception being supercritical flow where the Froude number is greater than one). The challenge of constructing a SI method for a DG model is that the DG machinery requires not only the standard finite element‐type area integrals, but also the finite volume‐type boundary integrals as well. These boundary integrals pose the biggest challenge in a SI discretization because they require the construction of a Riemann solver that is the true linear representation of the nonlinear Riemann problem; if this condition is not satisfied then the resulting numerical method will not be consistent with the continuous equations. In this paper we couple the SI time‐integrators with the DG method while maintaining most of the usual attributes associated with DG methods such as: high‐order accuracy (in both space and time), parallel efficiency, excellent stability, and conservation. The only property lost is that of a compact communication stencil typical of time‐explicit DG methods; implicit methods will always require a much larger communication stencil. We apply the new high‐order SI DG method to the shallow water equations and show results for many standard test cases of oceanic interest such as: standing, Kelvin and Rossby soliton waves, and the Stommel problem. The results show that the new high‐order SI DG model, that has already been shown to yield exponentially convergent solutions in space for smooth problems, results in a more efficient model than its explicit counterpart. Furthermore, for those problems where the spatial resolution is sufficiently high compared with the length scales of the flow, the capacity to use high‐order (HO) time‐integrators is a necessary complement to the employment of HO space discretizations, since the total numerical error would be otherwise dominated by the time discretization error. In fact, in the limit of increasing spatial resolution, it makes little sense to use HO spatial discretizations coupled with low‐order time discretizations. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

19.
A high-resolution finite volume hydrodynamic solver is presented for open-channel flows based on the 2D shallow water equations. This Godunov-type upwind scheme uses an efficient Harten–Lax–van Leer (HLL) approximate Riemann solver capable of capturing bore waves and simulating supercritical flows. Second-order accuracy is achieved by means of MUSCL reconstruction in conjunction with a Hancock two-stage scheme for the time integration. By using a finite volume approach, the computational grid can be irregular which allows for easy boundary fitting. The method can be applied directly to model 1D flows in an open channel with a rectangular cross-section without the need to modify the scheme. Such a modification is normally required for solving the 1D St Venant equations to take account of the variation of channel width. The numerical scheme and results of three test problems are presented in this paper. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
We consider numerical solutions of the two‐dimensional non‐linear shallow water equations with a bed slope source term. These equations are well‐suited for the study of many geophysical phenomena, including coastal engineering where wetting and drying processes are commonly observed. To accurately describe the evolution of moving shorelines over strongly varying topography, we first investigate two well‐balanced methods of Godunov‐type, relying on the resolution of non‐homogeneous Riemann problems. But even if these schemes were previously proved to be efficient in many simulations involving occurrences of dry zones, they fail to compute accurately moving shorelines. From this, we investigate a new model, called SURF_WB, especially designed for the simulation of wave transformations over strongly varying topography. This model relies on a recent reconstruction method for the treatment of the bed‐slope source term and is able to handle strong variations of topography and to preserve the steady states at rest. In addition, the use of the recent VFRoe‐ncv Riemann solver leads to a robust treatment of wetting and drying phenomena. An adapted ‘second order’ reconstruction generates accurate bore‐capturing abilities.This scheme is validated against several analytical solutions, involving varying topography, time dependent moving shorelines and convergences toward steady states. This model should have an impact in the prediction of 2D moving shorelines over strongly irregular topography. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号