首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
In this paper, we present a new family of direct arbitrary–Lagrangian–Eulerian (ALE) finite volume schemes for the solution of hyperbolic balance laws on unstructured meshes in multiple space dimensions. The scheme is designed to be high‐order accurate both in space and time, and the mesh motion, which provides the new mesh configuration at the next time step, is taken into account in the final finite volume scheme that is based directly on a space‐time conservation formulation of the governing PDE system. To improve the computational efficiency of the algorithm, high order of accuracy in space is achieved using the a posteriori MOOD limiting strategy that allows the reconstruction procedure to be carried out with only one reconstruction stencil for any order of accuracy. We rely on an element‐local space‐time Galerkin finite element predictor on moving curved meshes to obtain a high‐order accurate one‐step time discretization, while the mesh velocity is computed by means of a suitable nodal solver algorithm that might also be supplemented with a local rezoning procedure to improve the mesh quality. Next, the old mesh configuration at time level tn is connected to the new one at tn + 1 by straight edges, hence providing unstructured space‐time control volumes, on the boundary of which the numerical flux has to be integrated. Here, we adopt a quadrature‐free integration, in which the space‐time boundaries of the control volumes are split into simplex sub‐elements that yield constant space‐time normal vectors and Jacobian matrices. In this way, the integrals over the simplex sub‐elements can be evaluated once and for all analytically during a preprocessing step. We apply the new high‐order direct ALE algorithm to the Euler equations of compressible gas dynamics (also referred to as hydrodynamics equations) as well as to the magnetohydrodynamics equations and we solve a set of classical test problems in two and three space dimensions. Numerical convergence rates are provided up to fifth order of accuracy in 2D and 3D for both hyperbolic systems considered in this paper. Finally, the efficiency of the new method is measured and carefully compared against the original formulation of the algorithm that makes use of a WENO reconstruction technique and Gaussian quadrature formulae for the flux integration: depending on the test problem, the new class of very efficient direct ALE schemes proposed in this paper can run up to ≈12 times faster in the 3D case. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a fully discrete high‐resolution arbitrary Lagrangian–Eulerian (ALE) method is developed over untwisted time–space control volumes. In the framework of the finite volume method, 2D Euler equations are discretized over untwisted moving control volumes, and the resulting numerical flux is computed using the generalized Riemann problem solver. Then, the fluid flows between meshes at two successive time steps can be updated without a remapping process in the classic ALE method. This remapping‐free ALE method directly couples the mesh motion into a physical variable update to reflect the temporal evolution in the whole process. An untwisted moving mesh is generated in terms of the vorticity‐free part of the fluid velocity according to the Helmholtz theorem. Some typical numerical tests show the competitive performance of the current method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper proposes implicit Runge–Kutta (IRK) time integrators to improve the accuracy of a front‐tracking finite‐element method for viscous free‐surface flow predictions. In the front‐tracking approach, the modeling equations must be solved on a moving domain, which is usually performed using an arbitrary Lagrangian–Eulerian (ALE) frame of reference. One of the main difficulties associated with the ALE formulation is related to the accuracy of the time integration procedure. Indeed, most formulations reported in the literature are limited to second‐order accurate time integrators at best. In this paper, we present a finite‐element ALE formulation in which a consistent evaluation of the mesh velocity and its divergence guarantees satisfaction of the discrete geometrical conservation law. More importantly, it also ensures that the high‐order fixed mesh temporal accuracy of time integrators is preserved on deforming grids. It is combined with the use of a family of L‐stable IRK time integrators for the incompressible Navier–Stokes equations to yield high‐order time‐accurate free‐surface simulations. This is demonstrated in the paper using the method of manufactured solution in space and time as recommended in Verification and Validation. In particular, we report up to fifth‐order accuracy in time. The proposed free‐surface front‐tracking approach is then validated against cases of practical interest such as sloshing in a tank, solitary waves propagation, and coupled interaction between a wave and a submerged cylinder. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This article presents a numerical model that enables to solve on unstructured triangular meshes and with a high order of accuracy, Riemann problems that appear when solving hyperbolic systems. For this purpose, we use a MUSCL‐like procedure in a ‘cell‐vertex’ finite‐volume framework. In the first part of this procedure, we devise a four‐state bi‐dimensional HLL solver (HLL‐2D). This solver is based upon the Riemann problem generated at the barycenter of a triangular cell, from the surrounding cell‐averages. A new three‐wave model makes it possible to solve this problem, approximately. A first‐order version of the bi‐dimensional Riemann solver is then generated for discretizing the full compressible Euler equations. In the second part of the MUSCL procedure, we develop a polynomial reconstruction that uses all the surrounding numerical data of a given point, to give at best third‐order accuracy. The resulting over determined system is solved by using a least‐square methodology. To enforce monotonicity conditions into the polynomial interpolation, we use and adapt the monotonicity‐preserving limiter, initially devised by Barth (AIAA Paper 90‐0013, 1990). Numerical tests and comparisons with competing numerical methods enable to identify the salient features of the whole model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A new finite volume method for the incompressible Navier–Stokes equations, expressed in arbitrary Lagrangian–Eulerian (ALE) form, is presented. The method uses a staggered storage arrangement for the pressure and velocity variables and adopts an edge‐based data structure and assembly procedure which is valid for arbitrary n‐sided polygonal meshes. Edge formulas are presented for assembling the ALE form of the momentum and pressure equations. An implicit multi‐stage time integrator is constructed that is geometrically conservative to the precision of the arithmetic used in the computation. The method is shown to be second‐order‐accurate in time and space for general time‐dependent polygonal meshes. The method is first evaluated using several well‐known unsteady incompressible Navier–Stokes problems before being applied to a periodically forced aeroelastic problem and a transient free surface problem. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

6.
An empirical investigation is made of AMG solver performance for the fully coupled set of Navier–Stokes equations. The investigation focuses on two different FV discretizations for the standard driven cavity test problem. One is a collocated vertex‐based discretization; the other is a cell‐centred staggered‐grid discretization. Both employ otherwise identical orthogonal Cartesian meshes. It is found that if mixed‐order interpolation is used in the construction of the Galerkin coarse‐grid approximation (CGA), a close‐to‐optimum mesh‐independent scaling of the AMG convergence is observed with similar convergence rates for both discretizations. If, on the other hand, an equal‐order interpolation is used, convergence rates are mesh‐dependent but the scaling differs in each case. For the collocated‐grid case, it depends both on the mesh size, h (or bandwidth Qh?1) and on the total number of grids, G, whereas for the staggered‐grid case it depends only on Q. Comparing the two characteristics reveals that the Q‐dependent parts are very similar; it is only in the G‐dependent convergence for the collocated‐grid case that they differ. This takes the form of stepped reductions in the AMG convergence rate (implying step reductions in the quality of the Galerkin CGA that correlate exactly with step increases in G). These findings reinforce previous evidence that, for optimum mesh‐independent performance, mixed‐order interpolations should be used in forming Galerkin CGAs for coupled Navier–Stokes problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
On unstructured meshes, the cell‐centered finite volume (CCFV) formulation, where the finite control volumes are the mesh elements themselves, is probably the most used formulation for numerically solving the two‐dimensional nonlinear shallow water equations and hyperbolic conservation laws in general. Within this CCFV framework, second‐order spatial accuracy is achieved with a Monotone Upstream‐centered Schemes for Conservation Laws‐type (MUSCL) linear reconstruction technique, where a novel edge‐based multidimensional limiting procedure is derived for the control of the total variation of the reconstructed field. To this end, a relatively simple, but very effective modification to a reconstruction procedure for CCFV schemes, is introduced, which takes into account geometrical characteristics of computational triangular meshes. The proposed strategy is shown not to suffer from loss of accuracy on grids with poor connectivity. We apply this reconstruction in the development of a second‐order well‐balanced Godunov‐type scheme for the simulation of unsteady two‐dimensional flows over arbitrary topography with wetting and drying on triangular meshes. Although the proposed limited reconstruction is independent from the Riemann solver used, the well‐known approximate Riemann solver of Roe is utilized to compute the numerical fluxes, whereas the Green–Gauss divergence formulation for gradient computations is implemented. Two different stencils for the Green–Gauss gradient computations are implemented and critically tested, in conjunction with the proposed limiting strategy, on various grid types, for smooth and nonsmooth flow conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This paper reports numerical convergence study for simulations of steady shock‐induced combustion problems with high‐resolution shock‐capturing schemes. Five typical schemes are used: the Roe flux‐based monotone upstream‐centered scheme for conservation laws (MUSCL) and weighted essentially non‐oscillatory (WENO) schemes, the Lax–Friedrichs splitting‐based non‐oscillatory no‐free parameter dissipative (NND) and WENO schemes, and the Harten–Yee upwind total variation diminishing (TVD) scheme. These schemes are implemented with the finite volume discretization on structured quadrilateral meshes in dimension‐by‐dimension way and the lower–upper symmetric Gauss–Seidel (LU–SGS) relaxation method for solving the axisymmetric multispecies reactive Navier–Stokes equations. Comparison of iterative convergence between different schemes has been made using supersonic combustion flows around a spherical projectile with Mach numbers M = 3.55 and 6.46 and a ram accelerator with M = 6.7. These test cases were regarded as steady combustion problems in literature. Calculations on gradually refined meshes show that the second‐order NND, MUSCL, and TVD schemes can converge well to steady states from coarse through fine meshes for M = 3.55 case in which shock and combustion fronts are separate, whereas the (nominally) fifth‐order WENO schemes can only converge to some residual level. More interestingly, the numerical results show that all the schemes do not converge to steady‐state solutions for M = 6.46 in the spherical projectile and M = 6.7 in the ram accelerator cases on fine meshes although they all converge on coarser meshes or on fine meshes without chemical reactions. The result is based on the particular preconditioner of LU–SGS scheme. Possible reasons for the nonconvergence in reactive flow simulation are discussed.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This work describes the implementation and analysis of high‐order accurate schemes applied to high‐speed flows on unstructured grids. The class of essentially non‐oscillatory schemes (ENO), that includes weighted ENO schemes (WENO), is discussed in the paper with regard to the implementation of third‐ and fourth‐order accurate methods. The entire reconstruction process of ENO and WENO schemes is described with emphasis on the stencil selection algorithms. The stencils can be composed by control volumes with any number of edges, e.g. triangles, quadrilaterals and hybrid meshes. In the paper, ENO and WENO schemes are implemented for the solution of the dimensionless, 2‐D Euler equations in a cell centred finite volume context. High‐order flux integration is achieved using Gaussian quadratures. An approximate Riemann solver is used to evaluate the fluxes on the interfaces of the control volumes and a TVD Runge–Kutta scheme provides the time integration of the equations. Such a coupling of all these numerical tools, together with the high‐order interpolation of primitive variables provided by ENO and WENO schemes, leads to the desired order of accuracy expected in the solutions. An adaptive mesh refinement technique provides better resolution in regions with strong flowfield gradients. Results for high‐speed flow simulations are presented with the objective of assessing the implemented capability. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
We propose a well‐balanced stable generalized Riemann problem (GRP) scheme for the shallow water equations with irregular bottom topography based on moving, adaptive, unstructured, triangular meshes. In order to stabilize the computations near equilibria, we use the Rankine–Hugoniot condition to remove a singularity from the GRP solver. Moreover, we develop a remapping onto the new mesh (after grid movement) based on equilibrium variables. This, together with the already established techniques, guarantees the well‐balancing. Numerical tests show the accuracy, efficiency, and robustness of the GRP moving mesh method: lake at rest solutions are preserved even when the underlying mesh is moving (e.g., mesh points are moved to regions of steep gradients), and various comparisons with fixed coarse and fine meshes demonstrate high resolution at relatively low cost. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
We present a nodal Godunov method for Lagrangian shock hydrodynamics. The method is designed to operate on three‐dimensional unstructured grids composed of tetrahedral cells. A node‐centered finite element formulation avoids mesh stiffness, and an approximate Riemann solver in the fluid reference frame ensures a stable, upwind formulation. This choice leads to a non‐zero mass flux between control volumes, even though the mesh moves at the fluid velocity, but eliminates volume errors that arise due to the difference between the fluid velocity and the contact wave speed. A monotone piecewise linear reconstruction of primitive variables is used to compute interface unknowns and recover second‐order accuracy. The scheme has been tested on a variety of standard test problems and exhibits first‐order accuracy on shock problems and second‐order accuracy on smooth flows using meshes of up to O(106) tetrahedra. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This paper describes the implementation of a numerical solver that is capable of simulating compressible flows of nonideal single‐phase fluids. The proposed method can be applied to arbitrary equations of state and is suitable for all Mach numbers. The pressure‐based solver uses the operator‐splitting technique and is based on the PISO/SIMPLE algorithm: the density, velocity, and temperature fields are predicted by solving the linearized versions of the balance equations using the convective fluxes from the previous iteration or time step. The overall mass continuity is ensured by solving the pressure equation derived from the continuity equation, the momentum equation, and the equation of state. Nonphysical oscillations of the numerical solution near discontinuities are damped using the Kurganov‐Tadmor/Kurganov‐Noelle‐Petrova (KT/KNP) scheme for convective fluxes. The solver was validated using different test cases, where analytical and/or numerical solutions are present or can be derived: (1) A convergent‐divergent nozzle with three different operating conditions; (2) the Riemann problem for the Peng‐Robinson equation of state; (3) the Riemann problem for the covolume equation of state; (4) the development of a laminar velocity profile in a circular pipe (also known as Poiseuille flow); (5) a laminar flow over a circular cylinder; (6) a subsonic flow over a backward‐facing step at low Reynolds numbers; (7) a transonic flow over the RAE 2822 airfoil; and (8) a supersonic flow around a blunt cylinder‐flare model. The spatial approximation order of the scheme is second order. The mesh convergence of the numerical solution was achieved for all cases. The accuracy order for highly compressible flows with discontinuities is close to first order and, for incompressible viscous flows, it is close to second order. The proposed solver is named rhoPimpleCentralFoam and is implemented in the open‐source CFD library OpenFOAM®. For high speed flows, it shows a similar behavior as the KT/KNP schemes (implemented as rhoCentralFoam‐solver, Int. J. Numer. Meth. Fluids 2010), and for flows with small Mach numbers, it behaves like solvers that are based on the PISO/SIMPLE algorithm.  相似文献   

13.
The remap phase in arbitrary Lagrangian–Eulerian (ALE) hydrodynamics involves the transfer of field quantities defined on a post‐Lagrangian mesh to some new mesh, usually generated by a mesh optimization algorithm. This problem is often posed in terms of transporting (or advecting) some state variable from the old mesh to the new mesh over a fictitious time interval. It is imperative that this remap process be monotonic, that is, not generate any new extrema in the field variables. It is well known that the only linear methods that are guaranteed to be monotonic for such problems are first‐order accurate; however, much work has been performed in developing non‐linear methods, which blend both high and low (first) order solutions to achieve monotonicity and preserve high‐order accuracy when the field is sufficiently smooth. In this paper, we present a set of methods for enforcing monotonicity targeting high‐order discontinuous Galerkin methods for advection equations in the context of high‐order curvilinear ALE hydrodynamics. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

14.
Hermite weighted essentially non‐oscillatory (HWENO) methods were introduced in the literature, in the context of Euler equations for gas dynamics, to obtain high‐order accuracy schemes characterized by high compactness (e.g. Qiu and Shu, J. Comput. Phys. 2003; 193 :115). For example, classical fifth‐order weighted essentially non‐oscillatory (WENO) reconstructions are based on a five‐cell stencil whereas the corresponding HWENO reconstructions are based on a narrower three‐cell stencil. The compactness of the schemes allows easier treatment of the boundary conditions and of the internal interfaces. To obtain this compactness in HWENO schemes both the conservative variables and their first derivatives are evolved in time, whereas in the original WENO schemes only the conservative variables are evolved. In this work, an HWENO method is applied for the first time to the shallow water equations (SWEs), including the source term due to the bottom slope, to obtain a fourth‐order accurate well‐balanced compact scheme. Time integration is performed by a strong stability preserving the Runge–Kutta method, which is a five‐step and fourth‐order accurate method. Besides the classical SWE, the non‐homogeneous equations describing the time and space evolution of the conservative variable derivatives are considered here. An original, well‐balanced treatment of the source term involved in such equations is developed and tested. Several standard one‐dimensional test cases are used to verify the high‐order accuracy, the C‐property and the good resolution properties of the model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
We develop in this paper a discretization for the convection term in variable density unstationary Navier–Stokes equations, which applies to low‐order non‐conforming finite element approximations (the so‐called Crouzeix–Raviart or Rannacher–Turek elements). This discretization is built by a finite volume technique based on a dual mesh. It is shown to enjoy an L2 stability property, which may be seen as a discrete counterpart of the kinetic energy conservation identity. In addition, numerical experiments confirm the robustness and the accuracy of this approximation; in particular, in L2 norm, second‐order space convergence for the velocity and first‐order space convergence for the pressure are observed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The purpose of the present paper is to evaluate very‐high‐order upwind schemes for the direct numerical simulation (DNS ) of compressible wall‐turbulence. We study upwind‐biased (UW ) and weighted essentially nonoscillatory (WENO ) schemes of increasingly higher order‐of‐accuracy (J. Comp. Phys. 2000; 160 :405–452), extended up to WENO 17 (AIAA Paper 2009‐1612, 2009). Analysis of the advection–diffusion equation, both as Δx→0 (consistency), and for fixed finite cell‐Reynolds‐number ReΔx (grid‐resolution), indicates that the very‐high‐order upwind schemes have satisfactory resolution in terms of points‐per‐wavelength (PPW ). Computational results for compressible channel flow (Re∈[180, 230]; M?CL ∈[0.35, 1.5]) are examined to assess the influence of the spatial order of accuracy and the computational grid‐resolution on predicted turbulence statistics, by comparison with existing compressible and incompressible DNS databases. Despite the use of baseline Ot2) time‐integration and Ox2) discretization of the viscous terms, comparative studies of various orders‐of‐accuracy for the convective terms demonstrate that very‐high‐order upwind schemes can reproduce all the DNS details obtained by pseudospectral schemes, on computational grids of only slightly higher density. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The flux reconstruction (FR) formulation can unify several popular discontinuous basis high-order methods for fluid dynamics, including the discontinuous Galerkin method, in a simple, efficient form. An arbitrary Lagrangian–Eulerian (ALE) extension to the high-order FR scheme is developed here for moving mesh fluid flow problems. The ALE Navier–Stokes equations are derived by introducing a grid velocity. The conservation law are spatially discretised on hybrid unstructured meshes using Huynh’s scheme (Huynh 2007) on anisotropic elements (quadrilaterals) and using Correction Procedure via Reconstruction scheme on isotropic elements (triangles). The temporal discretisation uses both explicit and implicit treatments. The mesh movement is described by node positions given as a time series, instead of an analytical formula. The geometric conservation law is tested using free stream preservation problem. An isentropic vortex propagation test case is performed to show the high-order accuracy of the developed method on both moving and fixed hybrid meshes. Flow around an oscillating cylinder shows the capability of the method to solve moving boundary viscous flow problems, with the numeric method further verified by comparison of the result on a smoothly deforming mesh and a rigid moving mesh.  相似文献   

18.
The finite‐element, semi‐implicit, and semi‐Lagrangian methods are used on unstructured meshes to solve the nonlinear shallow‐water system. Several ??1 approximation schemes are developed for an accurate treatment of the advection terms. The employed finite‐element discretization schemes are the PP1 and P2P1 pairs. Triangular finite elements are attractive because of their flexibility for representing irregular boundaries and for local mesh refinement. By tracking the characteristics backward from both the interpolation and quadrature nodes and using ??1 interpolating schemes, an accurate treatment of the nonlinear terms and, hence, of Rossby waves is obtained. Results of test problems to simulate slowly propagating Rossby modes illustrate the promise of the proposed approach in ocean modelling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The present paper is the third article in a three‐part series on anisotropic mesh adaptation and its application to two‐ and three‐dimensional, structured and unstructured meshes. This third paper concerns the application of the full adaptation methodology to 2‐D unstructured meshes, including all four mesh modification strategies presented in Part I, i.e. refinement/coarsening, edge swapping and node movement. The mesh adaptation procedure is validated through a careful monitoring of a single adaptation step and of the solution–adaptation loop. Independence from the initial mesh and from the flow solver is illustrated. The efficiency of the overall methodology is investigated on relevant laminar and turbulent flow benchmarks. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
We present a new finite‐volume method for calculating complex flows on non‐uniform meshes. This method is designed to be highly compact and to accurately capture all discontinuities that may arise within the solution of a nonlinear hyperbolic system. In the first step, we devise a fourth‐degree Hermite polynomial to interpolate the solution. The coefficients defining this polynomial are calculated by using a least‐square method. To introduce monotonicity conditions within the procedure, two constraints are added into the least‐square system. Those constraints are derived by locally matching the high‐order Hermite polynomial with a low‐order TVD polynomial. To emulate these constraints only in regions of discontinuities, data‐depending weights are defined; these weights are based upon normalized indicators of smoothness of the solution and are parameterized by an O(1) quantity. The reconstruction so generated is highly compact and is fifth‐order accurate when the solution is smooth; this reconstruction becomes first order in regions of discontinuities. In the second step, this reconstruction is inserted in an HLL approximate Riemann solver. This solver is designed to correctly capture all discontinuities that may arise into the solution. To this aim, we introduce the contribution of a possible contact discontinuity into the HLL Riemann solver. Thus, a spatially fifth‐order non‐oscillatory method is generated. This method evolves in time the solution and its first derivative. In a one‐dimensional context, a linear spectral analysis and extensive numerical experiments make it possible to assess the robustness and the advantages of the method in computing multi‐scale problems with embedded discontinuities. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号