首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
齐效文  杨育林  薛飞 《润滑与密封》2007,32(7):20-25,28
采用羟基硅酸镁粉体作为润滑油添加剂,在MMU-5G材料端面摩擦磨损试验机上,研究了不同接触应力和相对滑动速度对45^#钢/45^#钢摩擦副磨损表面自修复膜生成的影响及其机制,借助SEM及EDS测试分析摩擦副的表面形貌及表面成分组成。结果表明,接触应力和相对滑动速度对羟基硅酸镁粉体添加剂在磨损表面形成自修复膜影响显著。在接触应力为1.53,3.06,4.59,7.64MPa和在相对滑动速度0.416m/s的工况条件下,试样磨损表面有自修复膜生成。接触应力为3.06MPa和相对滑动速度为0.416m/s时,易于在短时间内达到磨损-自修复动态平衡,自修复效果最为理想。自修复膜的生成过程包含磨粒磨损和摩擦化学反应2个阶段。自修复膜的生成使得试样摩擦磨损表面平整光滑,可以有效降低金属磨损。  相似文献   

2.
The aim of this research work was to investigate tribological properties of low-friction DLC coatings when operating in helium atmosphere. Two commercial DLC coatings (a-C:H and Me-C:H) were included in the investigation and compared to reference PTFE-based coatings, normally used on components operating in helium. Coatings were deposited on hardened 100Cr6 bearing steel discs and tested against uncoated steel balls in low-load pin-on-disc contact configuration. Investigation was focused on the effect of substrate roughness (R a ?=?0.05?C0.2???m) and contact conditions, including contact pressure (150?C350?MPa) and sliding speed (0.2?C0.4?m/s) on the coefficient of friction of DLC coatings operating in helium. Results of this investigation show that for low-load sliding contact DLC coatings provide low friction in helium atmosphere, similar to soft PTFE-based coatings. At the same time DLC coatings investigated were found to substantially reduce wear of the coated surface. However, while the wear of the coated part has been more or less eliminated, application of DLC coating prolongs running-in and increases wear of the steel counter-part. Furthermore, also in helium atmosphere tribolgical behaviour of DLC coatings showed dependence on the coating type and contact conditions.  相似文献   

3.
Graphene nanoplatelets (GNPs), despite their unique properties, were not widely investigated as reinforcement in metal matrix nanocomposites. The nanocomposite was fabricated by adding 15-nm-thick GNPs to AZ31 magnesium alloy via friction stir processing (FSP). Mechanical, frictional and wear properties were investigated. It was observed that refined microstructure with a range of 3–9 µm grain size and the presence of GNPs, i.e., reinforcing particles, improved the tensile properties and increased the ultimate tensile strength to 278 MPa. FSP increased the strain-to-fail by 133% compared to that of base metal, while it was decreased by adding GNPs. Moreover, the presence of GNPs decreased the adhesive wear mechanism by squeezing out, smudging on the surface and, finally, forming a protective layer between the sliding surfaces. Hence, the coefficient of friction was decreased to 60% and the range of fluctuations in friction plot was confined by adding GNPs. They were further decreased by increasing the normal load and sliding velocity due to easier debonding of the GNPs and the surrounding AZ31 Mg matrix resulting in forming a lubricating layer between sliding surfaces.  相似文献   

4.
F. Platon  P. Fournier  S. Rouxel 《Wear》2001,250(1-12):227-236
The goal of the study carried out in the laboratory was to quantify the wear and the friction of two materials used for the manufacturing of hip prostheses. Tests used had to obtain in a short time the tribological behaviour laws of the materials. Tests on a hip simulator have been excluded because their cost and their duration were too high for a program of preliminary development of new materials.

To amplify wear phenomena, dry friction tests were carried out for two configurations: ball-on-disc and pin-on-disc. The influence of the contact pressure at constant sliding velocity on the wear of materials has been clearly shown.

Results obtained with several different tested materials (stainless steel/UHMWPE, stainless steel+DLC coating/UHMWPE, stainless steel+DLC coating/stainless steel+DLC coating, titanium alloy+DLC coating/UHMWPE, titanium alloy+DLC coating/titanium alloy+DLC coating, zirconium dioxide/UHMWPE, alumina/UHMWPE, alumina/alumina) have shown the superiority of DLC coatings. Promising results obtained during this study are in the validation stage on a hip simulator.  相似文献   


5.
TiN and TiAlN thin hard coatings have been widely applied on machine components and cutting tools to increase their wear resistance. These coatings have different wear behaviors, and determination of their wear characteristics in high-temperature and high-speed applications has great importance in the selection of suitable coating material to application. In this article, the wear behavior of single-layer TiN and TiAlN coatings was investigated at higher sliding speed and higher sliding distances than those in the literature. The coatings were deposited on AISI D2 cold-worked tool steel substrates using a magnetron sputtering system. The wear tests were performed at a sliding speed of 45 cm/s using a ball-on-disc method, and the wear area was investigated at seven different sliding distances (36–1,416 m). An Al2O3 ball was used as the counterpart material. The wear evolution was monitored using a confocal optical microscope and surface profilometer after each sliding test. The coefficient of friction and coefficient of wear were recorded with increasing sliding distance. It was found that the wear rate of the TiAlN coating decreases with sliding distance and it is much lower than that of TiN coating at longer sliding distance. This is due to the Al2O3 film formation at high temperature in the contact zone. Both coatings give similar coefficient of friction data during sliding with a slight increase in that of the TiAlN coating at high sliding distances due to the increasing alumina formation. When considering all results, the TiAlN coating is more suitable for hard machining applications.  相似文献   

6.
Studies have been carried out to explore the friction and wear behaviors of NiAl matrix self-lubricating composites containing graphene nanoplatelets (NG) against an Si3N4 ball from 100 to 600°C with a normal load of 10 N and a constant speed of 0.2 m/s. The results show that NG exhibits excellent tribological performance from 100 to 400°C compared to NiAl-based alloys. A possible explanation for this is that graphene nanoplatelets (GNPs) contribute to the formation of a friction layer, which could be beneficial to the low friction coefficient and lower wear rate of NG. As the temperature increases up to 500°C, the beneficial effect of GNPs on the tribological performance of NG becomes invalid due to the oxidation of GNPs, resulting in severe adhesive wear and degradation of the friction layer on the worn surface of NG. GNPs could hold great potential applications as an effective solid lubricant to promote the formation of a friction layer and prevent severe sliding wear below 400°C.  相似文献   

7.
To tap the full potential of polymers to be used as tribo-materials under water lubrication, it is very important to improve their resistance to water uptake on the one hand and improve their strength and load bearing capacity on the other so that their performance under these conditions is not deteriorated. Hence, a unique approach of fabricating a hybrid polymer nanocomposite reinforced with nanoclay for improving the resistance to water uptake and carbon nanotubes (CNTs) to improve the mechanical/tribological properties is undertaken. Ultrahigh molecular weight polyethylene (UHMWPE) hybrid nanocomposites were fabricated via ball milling followed by hot pressing method. Functionalized multi-wall CNTs and C15A organoclay were used as nanofillers in UHMWPE matrix. Hybrid nanocomposites were developed with CNT loadings of 0.5, 1.5 and 3.0 wt% while keeping C15A organoclay content fixed at an optimized value of 1.5 wt%. Initially, the hybrid nanocomposites were optimized under dry sliding conditions whereby a loading of 1.5 wt% of CNTs and 1.5 wt% C15A organoclay resulted in the maximum reduction in the specific wear rate by about 64% as compared to pristine UHMWPE. Later, tribological performance of the optimized hybrid nanocomposite was compared with pristine UHMWPE and its UHMWPE nanocomposites under water-lubricated conditions sliding against a 440C stainless steel ball for 150,000 cycles. The specific wear rate showed a reduction by ~46% for the 1.5 wt% CNTs hybrid nanocomposites as compared to pristine UHMWPE under water lubrication. The improved resistance to wear was attributed to the uniform dispersion of both the nanofillers, namely CNTs and C15A organoclay which effectively increased the load bearing capacity of UHMWPE. Moreover, the excellent barrier properties of the platelet-like structure of C15A clay which presented a torturous path for the diffusion of the water molecule in UHMWPE reduced the softening of the surface layer leading to better resistance to wear under water lubrication.  相似文献   

8.
The boundary lubrication regime plays a very important role in determining the life span of any of the two mating parts under liquid-lubricated conditions. It is during the start\stop cycles when insufficient fluid is available to fully separate the surfaces in relative motion and thus unusual wear takes place; a case of boundary lubrication. The aim of this work is to study the feasibility of using polymer coatings as boundary lubricants. This study investigates the friction and wear properties of ultra-high molecular weight polyethylene (UHMWPE) films coated on aluminium substrates under dry and base oil (without any additives)-lubricated conditions. In order to increase the load bearing capacity of the UHMWPE coatings, 0.1 wt% of single-walled carbon nanotubes are added. Experiments are carried out on a custom-built tribometer simulating a line contact between a polymer-coated cylindrical Al surface (shaft) and a flat uncoated Al plate as the counterface. The experimental parameters such as the normal load and the sliding speed are selected to simulate the boundary and mixed lubrication regimes for comparison purposes. Specific wear rates of the polymer films and bare Al surface under lubricated conditions are also calculated. Stribeck curves have been generated to evaluate the effectiveness of the pristine UHMWPE and the nanocomposite coatings in the various regimes of lubrication, especially the boundary lubrication regime. It is observed that the selected polymer coatings are effective in protecting the metallic surfaces without causing any observable oil contamination with wear debris.  相似文献   

9.
The surfaces of a heavily loaded ball-joint were initially covered with a sliding spray and suffer wear. A solution is found by incorporating UHMWPE pads (Ultra high molecular weight polyethylene) with a carbon fibre/epoxy reinforced ring as sliding material into the chairs of the structure, while the steel ball-side is covered with a Zn-phosphate primer coating, protecting against corrosion. The local static and dynamic behaviour of the hybrid UHMWPE pads in contact with steel or Zn-coated counterfaces has been large-scale tested on loading capacity, low friction and wear resistance. For protection of the sliding counterface against wear, a polymer lip covering the carbon ring has been experimentally designed to flow over the carbon ring under high contact pressures, assuming the retained polymer disc under hydrostatic conditions. As such, the soft coating resists extremely high contact pressures (150 MPa) with good adhesion to the steel ball. However the application method should be carefully selected, sprayed coatings are the most favourable for low initial static friction. Calculated bulk and flashtemperatures revealed that the UHMWPE melting temperature is not exceeded, although softening of the coating under high contact pressures may be favourable for a ‘self-repairing’ ability. Pre-sliding creep and intermediate wear paths as manifesting in the ball-joint were simulated, indicating that the maximum design coefficient of friction is not exceeded. Test results are compared to FEM-calculations to verify the practical applicability of the modified sliding system.  相似文献   

10.
镍基合金喷熔层摩擦学行为与机制的研究   总被引:1,自引:0,他引:1  
采用热喷熔工艺制备了两种镍基合金喷熔层,并选用高锰钢、不锈钢作为对比材料,研究了镍基合金喷熔层的摩擦磨损性能。研究结果表明:镍基合金喷熔层具有良好的耐磨损性能和较低的摩擦系数。镍含量对喷熔层的摩擦学性能有显著影响,高镍含量的镍基合金,其耐磨性能明显优于低镍含量的镍基合金。在低速轻载条件下,镍基合金喷熔层的磨损机理为微观犁削;高速重载时,表现为粘着磨损和磨料磨损,其中高镍含量的喷熔层表面形成了致密的转移膜,有效地降低了磨损率。  相似文献   

11.
A novel FeCrNiMoCBSi amorphous/nanocrystalline coating was fabricated using a plasma spraying process. The coating was dense with a low porosity of approximately 0.99%. The coating consisted of a 67.8 vol% amorphous phase coupled with many nanocrystalline grains that were approximately 5?nm in diameter. The mechanical properties of the as-sprayed coating were determined by nanoindentation measurement, and the tribological behaviors were systematically investigated in a reciprocating sliding contact. The results show that FeCrNiMoCBSi coatings possess superior wear resistance compared to other typically similar Fe-based amorphous coatings. The tribological behaviors evolve with the combination of normal load and sliding velocity. Herein, the dominant wear mechanisms are delamination wear and oxidation wear. With an increase in normal load and sliding velocity, the abrasive wear is gradually weakened, the formation of oxide films on the worn surfaces is facilitated, and wear debris is ground to powder. The oxide films suffer from fatigue wear with induced cracks undergoing reciprocating sliding effects.  相似文献   

12.
Abstract

Mechanical components in tribological systems exposed to elevated temperatures are gaining increased attention since more and more systems are designed to operate under extreme conditions. In hot metal forming, the effect of temperature on friction and wear is especially important since it is directly related to process economy (tool wear) and quality of the produced parts (friction between tool and workpiece). This study is therefore focused on fundamental understanding pertaining to the tribological characteristics of prehardened hot work tool steel during sliding against 22MnB5 boron steel. The tribological tests were carried out using a high temperature reciprocating sliding friction and wear tester under a normal load of 31 N (corresponding to a contact pressure of 10 MPa), a sliding speed of 0·2 m s?1 and temperatures ranging from 40°C to 800°C. It was found that friction coefficient and specific wear rate decreased at elevated temperature because of formation of compacted wear debris layers on the surfaces.  相似文献   

13.
The tribological behavior of WC-steel 11G13 composite material in contact with cast tool steel is considered over a sliding speed range of 10–40 m/s under a pressure of 2 MPa. The after-test surface structure is examined. Catastrophic wear of the material is proved to occur within a 23–30 m/s sliding speed range. It is shown that the sharp (fourfold) increase in the wear rate within the given speed range is related to a change in the wear mode. The subsurface region of the WC-steel 11G13 material is found to have a multilayer structure, the layers differing greatly in their properties and structure.  相似文献   

14.
Nickel aluminide (NiAl) intermetallic compound coatings were in situ synthesized from pre-placed mixed powders of Ni and Al by laser cladding. The phase composition and microstructure of the NiAl coatings were studied by means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The effects of laser cladding parameters on the microstructure and friction and wear behavior of the NiAl coatings were investigated. It has been found that laser power density had a crucial influence on the microstructure and friction and wear behavior of NiAl coatings. Namely, the NiAl coatings synthesized under a lower power density have more dense and fine microstructure, and lower friction coefficient and wear rate. Besides, the friction and wear behavior of the laser cladding NiAl coatings is highly dependent on applied normal load and sliding speed; and the resulting coatings sliding against Si3N4 in a ball-on-disc contact mode is more suitable for tribological application at a moderate normal load of 3–7 N and sliding speed of 0.16–0.21 m/s.  相似文献   

15.
Fe–Ni–RE self-fluxing alloy powders were flame sprayed onto 1045 carbon steel. The tribological properties of Fe–Ni–RE alloy coatings under dry sliding against SAE52100 steel at ambient conditions were studied on an Optimol SRV oscillating friction and wear tester in a ball-on-disc contact configuration. Effects of load and sliding speed on tribological properties of the Fe–Ni–RE coatings were investigated. The worn surfaces of the Fe–Ni–RE alloy coatings were examined with a scanning electron microscopy(SEM) and an energy-dispersive spectroscopy(EDS). It was found that the Fe–Ni–RE alloy coatings had better wear resistance than the SAE52100 steel. An adhered oxide debris layer was formed on the worn surface in friction. Area of the friction layer varied with variety of sliding speed, but did not vary with load. The oxide layer contributed to decreased wear, but increased friction. Wear rate of the material increased with the load, but dramatically decreased at first and then slightly decreased the sliding speed. The friction coefficient of the material was 0.40-0.58, and decreased slightly with the load, but increased with sliding speed at first, and then tended to be a constant value. Wear mechanism of the coatings was oxidation wear and a large amount of counterpart material was transferred to the coatings.  相似文献   

16.
The tribological behaviors of ultra-high molecular weight polyethylene (UHMWPE) microparticle-modified high-strength glass fabric/phenolic laminate composites sliding against stainless steel under water lubrication have been investigated. Results showed that the incorporation of UHMWPE microparticles, especially at the mass fraction of 5.0 %, improved the wear resistance of the laminate composite to a significant extent, because UHMWPE microparticle can effectively absorb and dissipate the friction energy through a plastic deformation during the formation of the regular ripple-like abrasion patterns on its worn surface. During the sliding process, after the phenolic resin was firstly worn off, UHMWPE microparticles with much better wear resistance were protruded from the worn surface of the laminate composite, leading to a fundamental change in the contact status of the matched surfaces from rigid resin and fibers/steel to flexible UHMWPE/steel. As a result, low and steady friction coefficient was obtained due to good adaptability of UHMWPE to water lubrication.  相似文献   

17.
MoS2–Cr coatings with different Cr contents have been deposited on high speed steel substrates by closed field unbalanced magnetron (CFUBM) sputtering. The tribological properties of the coatings have been tested against different counterbodies under dry conditions using an oscillating friction and wear tester. The coating microstructures, mechanical properties and wear resistance vary according to the Cr metal-content. MoS2 tribological properties are improved with a Cr metal dopant in the MoS2 matrix. The optimum Cr content varies with different counterbodies. Showing especially good tribological properties were MoS2–Cr8% coating sliding against either AISI 1045 steel or AA 6061 aluminum alloy, and MoS2–Cr5% coating sliding against bronze. Enhanced tribological behavior included low wear depth on coating, low wear width on counterbody, low friction coefficients and long durability.  相似文献   

18.
In this study, ~?3.5 µm thick multilayer titanium alumina nitride (TiAlN), alumina titanium nitride (AlTiN), and alumina chromium nitride (AlCrN) coatings were deposited on the H13 steel surface by cathodic arc physical vapor deposition (CAPVD) method. The tribological performance of the coatings was evaluated by a tribometer at boundary lubrication condition. Then, coating surfaces were observed by optical microscope, optical profilometer, and atomic force microscope to evaluate the morphological changes, wear volumes, and tribofilm thickness. Also, scanning electron microscopy (energy dispersive X-ray) and X-ray photoelectron spectrometry analyses were applied to coating surfaces for the tribochemical evolution of the tribofilm. Results showed that AlCrN coating performed the best tribological behavior at boundary lubricated condition, when compared to TiAlN and AlTiN coatings and it can be used as a wear resistant cam tappet coating in internal combustion engines.  相似文献   

19.
It is generally agreed that contact pressure and sliding speed are the predominant factors for the prediction of wear of ultrahigh‐molecular‐weight polyethylene (UHMWPE) in joint prostheses. A new parameter for predicting the wear of UHMWPE has been introduced with a wear test in vitro. The parameter is the time of exposure to a lubricating liquid on a bearing surface. A pin‐on‐disc machine was designed such that the exposure time of a Co Cr Mo alloy disc to a lubricating liquid could be varied. The specific wear of UHMWPE was increased by a decrease in the exposure time, even if the contact pressure and the sliding speed were held constant. The parameter is able to account for the contact pressure set in the experiment (2.0–20.0 mPa), and clarifies the conditions under which the specific wear of UHMWPE is found to be high.  相似文献   

20.
This article analyzes the influence of graphite reinforcement, load, sliding speed, and sliding distance on tribological behavior of A356 aluminum matrix composites reinforced with silicon carbide and graphite using the full-factorial design. The wear rates of A356/10SiC composite material and A356/10SiC/1Gr and A356/10SiC/3Gr hybrid composites have been analyzed. The composites were obtained by a modified compocasting procedure. Tribological tests were performed on a block-on-disc tribometer without lubrication. The testing included sliding speeds of 0.25 and 1.0 m/s, normal loads of 10 and 20 N, and sliding distances of 300 and 900 m. The analysis of the obtained results was performed using the full-factorial method based on the signal-to-noise (S/N) ratio. The effects of load, sliding speed, weight percentage of graphite reinforcement, and sliding distance on the wear rate are 38.99, 17.87, 13.95, and 11.25%, respectively. The best tribological characteristics were exhibited by the A356/10SiC/1Gr hybrid aluminum composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号