首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 141 毫秒
1.
基于多通道加权卷积神经网络的齿轮箱振动信号特征提取   总被引:3,自引:0,他引:3  
为了解决单通道振动信号输入不能全面表达故障特征信息及齿轮箱故障早期诊断问题,提出了一种新的深度神经网络(Deep neural network,DNN)模型—多通道加权卷积神经网络(Multi-channels weighted convolutional neural network,MCW-CNN),并应用于齿轮箱振动信号特征学习和故障诊断.首先,采用经验模态分解(Empirical mode decomposition,EMD)对振动信号进行处理,得到多通道一维信号突出振动信号的故障特征,并将其转化为多通道图像输入,从而充分发挥CNN在图像特征提取上的优良性能,将齿轮箱故障诊断问题进一步转化为CNN更为擅长的多通道图像识别问题;其次,针对各通道图像频率和带宽的不同,在卷积层采用动态感受野进行图像特征提取,全面提取多通道图像特征细节;针对各通道图像携带冲击特征的强弱不同,提出了基于峭度加权的多通道融合方法,增强了冲击特征强的通道故障特征.最后,通过故障诊断仿真试验和齿轮箱故障诊断试验验证所提方法的有效性.试验结果表明,MCW-CNN可有效提取振动信号的故障特征,识别正确率明显高于典型的深度学习方法和传统的分类器.  相似文献   

2.
为了提高齿轮箱中齿轮单故障及复合故障的识别精度,克服传统故障特征提取方法过于依赖经验判断的困难,从深度学习领域出发,融合卷积神经网络(convolutional neural network,简称CNN)与对抗神经网络(generative adversarial network,简称GAN)两种深度神经网络特征,提出...  相似文献   

3.
针对行星齿轮箱中各部件所激起的振动成分混叠、早期故障特征经常被较强的各级齿轮谐波成分以及环境噪声所湮没的问题,提出一种多共振分量融合卷积神经网络(multi-resonance component fusion based convolutional neural network,简称MRCF-CNN)的行星齿轮箱故障诊断方法。首先,对振动信号进行共振稀疏分解,得到包含齿轮谐波成分的高共振分量和可能包含轴承故障冲击成分的低共振分量;其次,构建多共振分量融合卷积神经网络,将得到的高、低共振分量和原始振动信号进行自适应的特征级融合,通过有监督的方式训练模型并进行行星齿轮箱故障诊断。对行星齿轮箱实验数据的分析结果表明,该方法能够有效分类行星齿轮箱中滚动轴承和齿轮的故障,成功对行星齿轮箱故障进行诊断,同时能够进一步增强卷积神经网络对振动信号所蕴含的故障信息的辨识能力。  相似文献   

4.
针对行星齿轮箱中各部件所激起的振动成分混叠、早期故障特征经常被较强的各级齿轮谐波成分以及环境噪声所湮没的问题,提出一种多共振分量融合卷积神经网络(multi-resonance component fusion based convolutional neural network,简称MRCF-CNN)的行星齿轮箱故障诊断方法。首先,对振动信号进行共振稀疏分解,得到包含齿轮谐波成分的高共振分量和可能包含轴承故障冲击成分的低共振分量;其次,构建多共振分量融合卷积神经网络,将得到的高、低共振分量和原始振动信号进行自适应的特征级融合,通过有监督的方式训练模型并进行行星齿轮箱故障诊断。对行星齿轮箱实验数据的分析结果表明,该方法能够有效分类行星齿轮箱中滚动轴承和齿轮的故障,成功对行星齿轮箱故障进行诊断,同时能够进一步增强卷积神经网络对振动信号所蕴含的故障信息的辨识能力。  相似文献   

5.
由于在工程实际中采集的故障振动数据分布不同且难以标记,使得卷积神经网络(convolutional neural network,简称CNN)在故障诊断过程中难以发挥最佳作用。针对此问题,提出了一种基于一维卷积神经网络迁移学习的滚动轴承故障诊断方法。首先,建立了可直接处理轴承振动信号的一维卷积神经网络模型并使用源域数据对其进行预训练;其次,利用最大均值差异(maximum mean discrepancy,简称MMD)度量源域和目标域在预训练模型中各层上的特征分布距离,并通过MMD判断卷积层和全连接层能否迁移,若不能迁移则使用初始化方式补全模型;最后,使用少量标记的目标域数据再次训练模型,进而对目标域故障数据进行分类辨识。利用故障轴承数据对方法有效性进行验证,结果显示,该方法在目标域只有少量标签的情况下能够实现变工况滚动轴承故障分类,并达到较高的诊断准确率。  相似文献   

6.
针对传统滚动轴承故障诊断方法过度依赖专家经验和故障特征提取困难的问题,结合深层神经网络处理高维、非线性数据的优势,提出了一种基于深层小波卷积自编码器(DWCAE)和长短时记忆网络(LSTM)的轴承故障诊断方法。首先构造了小波卷积自编码器(WCAE),改进了其损失函数,并加入了收缩项限制防止网络过拟合;其次将多个WCAE堆叠构成DWCAE,利用大量无标签样本对DWCAE进行了无监督预训练,挖掘出更有利于故障诊断的深层特征;最后利用深层特征训练LSTM网络,从而建立了诊断模型。仿真信号和实验数据分析结果表明:该方法能有效地对轴承进行多种故障类型和多种故障程度的识别,特征提取能力和识别能力优于人工神经网络、支持向量机等传统方法及深度信念网络、深层自编码器等深度学习方法。  相似文献   

7.
传统的机械故障诊断方法需要将采集的故障波信号进行信号处理,再结合神经网络进行特征提取与分类,不仅流程复杂、耗费时间,而且识别准确率不高。针对此问题,采用一维卷积神经网络(one dimensional convolutional neural network,简称1D?CNN)对试验获取的某航空发动机的齿轮故障振动数据进行特征提取与分类,建立齿轮故障一维卷积神经网络模型,对航空发动机轴承进行故障诊断。试验与分析结果表明:采用该神经网络模型对齿轮进行分类,其准确率可达80%,相较于采用传统的前馈神经网络63.9%的识别准确率,提高了15.07%;与采用支持向量机(support vector machine ,简称SVM)对故障进行分类识别相比,该方法准确率提高了15.89%。本方法能够直接将波形振动信号作为输入,通过卷积、池化等一系列操作,输出最后的分类结果,简化了传统方法先进行信号处理再通过机器学习诊断的步骤,为航空发动机故障诊断提供一种可行方法。  相似文献   

8.
针对机械设备故障诊断大多采用有监督学习提取故障特征,而有标签数据难以获取的现状,提出一种在稀疏自动编码器中嵌入卷积网络的深度神经网络。利用希尔伯特和傅里叶变换实现机械设备振动时间序列向Hilbert包络谱的转换,通过卷积网络中多组卷积核自动学习谱空间数据的不同特征,保证了特征提取的自动化、全面性和多样性,稀疏自动编码器搜索具有正交性数据特征的低维表示,并使得编码后的数据具有很强的聚类特性,实现设备的自动故障诊断。通过对滚动轴承振动信号进行分析实验,证明该方法在设备故障诊断中具有去标签化、自动化、鲁棒性等特点。  相似文献   

9.
深度学习类轴承故障智能诊断研究中,一般会假设训练数据与测试数据同分布且典型故障样本充足,而实际工况复杂多变,难以获得大量标签数据。将残差学习引入卷积自编码,并结合迁移学习,提出了基于残差卷积自编码无监督域自适应迁移的故障诊断方法。堆叠一维卷积自编码进行特征提取,通过残差学习避免过拟合,提高学习效率;融合多层多核概率分布适配来约束网络学习域不变特征;实现了基于无监督域自适应迁移学习的故障诊断,并获得了较高准确率的识别结果。采用凯斯西储大学轴承数据集进行验证,结果证明了所提出方法的有效性,此外还对主要参数及其影响进行了探讨并给出了对比结果。  相似文献   

10.
行星齿轮箱振动信号具有非平稳特性,需要一定的先验知识和诊断专业知识设计和解释特征从而实现故障诊断。为了实现行星齿轮箱的智能诊断,提出一种基于经验模态分解(Empirical mode decomposition,EMD)和深度卷积神经网络(Deep convolutional neural network,DCNN)的智能故障诊断方法。首先对振动信号进行经验模态分解得到内禀模式函数(Intrinsic mode function, IMF);然后利用DCNN融合特征信息明显的IMF分量,并自动提取特征;最后,将特征用于分类器分类识别,从而实现行星齿轮箱故障诊断的自动化。试验结果表明:该方法能准确、有效地对行星齿轮箱的工作状态和故障类型进行分类。  相似文献   

11.
针对行星齿轮箱故障信号成分复杂和时变性强的特点,提出了基于注意力机制的一维卷积神经网络(1D-CNN )行星齿轮箱故障诊断方法.首先,将行星齿轮箱各类故障状态的原始振动信号进行分段处理,作为模型的输入;其次,利用一维卷积神经网络对行星齿轮箱的原始振动信号学习齿轮故障特征,结合注意力机制( AM )对特征序列自适应的赋予不同的权重,增强故障特征信息;最后,利用 Softmax 分类器实现行星齿轮箱的故障诊断.通过故障实验验证以及与其他模型的对比,该故障诊断模型具有较强的学习能力,诊断性能优于其他的深度学习模型,有较好的工程实际意义.  相似文献   

12.
缘于多传感器信号的融合能够更加准确地诊断机械故障,针对传统浅层融合模型对复杂数据非线性映射与特征表示能力较弱的问题,提出一种利用深度卷积神经网络(deep convolutional neural network,简称DCNN)融合多传感器信号特征的机械故障诊断方法。首先,对多传感器振动信号分别进行特征提取,将获得特征向量作为一维特征面构造多传感器特征面集合,将该集合作为深度卷积神经网络的输入;其次,利用深度网络结构实现对多通道特征面的自适应层级化融合与提取;最后,由softmax回归分类器输出诊断结果。实验结果表明,该方法具有更高的故障分类与辨识能力,良好的鲁棒性和自适应性。本方法可为解决复杂机械系统故障诊断的多传感器信息融合问题,提供理论参考依据。  相似文献   

13.
深度神经网络在故障诊断领域已有一定应用,为了进一步提高其诊断效率和准确率,本文提出了一种基于时空神经网络的滚动轴承故障诊断方法:该方法使用卷积神经网络(Convolution neural network,CNN)框架,借用深度残差网络(Residual neural network,ResNet)的网络并联法,并联CNN卷积层和循环神经网络(Recurrent neural network,RNN)的LSTM层,构建新的时空神经网络,对传感器采集的信号进行特征提取。该网络同时具备对空间域的强大学习能力和时域信号的学习能力,并且在每一层中权值共享,这使得时空神经网络参数数量较低,从而极大地避免了过拟合现象的产生,也降低了系统所占用的内存,可以高效地提取故障特征,从而提高诊断的准确率。试验结果表明:该方法比单个网络的诊断正确率提高了1.01个百分点。  相似文献   

14.
齿轮箱发生故障时,因振源耦合等因素,各类单一故障和复合故障间具有一定共性特征,造成传统的基于卷积神经网络(convolutional neural network,简称CNN)的智能诊断方法准确率下降和诊断性能鲁棒性差.针对上述问题,提出一种新的基于一维卷积神经网络(one-dimensional CNN,简称1DCN...  相似文献   

15.
为了实现轴承多源异构故障数据的特征融合,达到提高故障诊断精度的目的 ,提出了基于深度神经网络的多源故障特征融合方法.介绍了堆叠自编码器和卷积神经网络原理;使用堆叠自编码器提取了一维振动数据的故障特征,使用卷积神经网络提取了二维图像数据的故障特征;为了充分发挥多源异构故障数据的关联性和互补性,使用深度神经网络将一维数据特征和二维数据特征进行交替优化和融合,提取更加能够反映故障特性的隐藏融合特征.以凯斯西储大学轴承故障数据为基础设计了三组实验,由实验结果可以看出,基于融合特征的故障诊断精度比单独使用一维数据特征或二维数据特征的诊断精度高10%以上,充分证明了基于多源异构特征融合故障诊断方法的有效性.  相似文献   

16.
针对行星齿轮箱故障振动特征需要预处理、识别困难以及诊断模型收敛速度较慢的问题,提出基于集成卷积神经网络的行星齿轮箱智能故障诊断方法。首先,采用一维卷积对齿轮的原始时域振动信号提取特征,之后通过采用两个弱分类器,根据弱分类学习错误率的性能更新样本权重,调整权重后根据训练集训练弱分类器。重复此过程,最后通过设置策略整合弱分类器,形成集成卷积神经网络;建立一个稳定用于行星齿轮箱的智能故障诊断的模型。实验结果表明:集成卷积神经网络能很好地对行星齿轮原始振动信号进行快速诊断。相对于传统卷积神经网络对齿轮原始时域振动故障信号的诊断具有更强的辨识能力和更快的收敛速度;所建立的智能诊断模型可以有效地诊断齿轮不同的故障状态。  相似文献   

17.
提出一种可以直接从振动信号中提取频域特征的非对称自编码器方法。与传统自编码器以重构振动信号作为目标输出不同,频域自编码器使用振动信号的频谱作为目标输出,这种非对称的自编码器可以学习振动信号与其频谱之间的映射关系,使得编码器可以输出频域特征。为了说明提出的频域自编码器的特征提取效果,在轴承数据集上进行特征提取和故障诊断实验,在没有引入标签信息的情况下,频域自编码器提取到的特征表现出较好的聚类效果,能够区分轴承的不同故障类型;进一步进行了泛化实验,训练分类器时使用1%的有标签样本,可以达到90%以上的故障分类准确率。实验结果表明,频域自编码器与传统自编码器相比,可以更好地提取振动信号的故障特征信息,具有一定的实用价值。  相似文献   

18.
薛妍  沈宁  窦东阳 《轴承》2021,(4):48-54
针对滚动轴承性能退化状态的识别问题,提出了基于一维卷积神经网络的故障诊断方法。以轴承原始振动信号为输入,利用一维卷积神经网络自适应学习特征和分类的能力,实现由数据到识别结果的“端到端”诊断,避免了人为因素的干扰。通过凯斯西储大学不同故障尺寸的滚动轴承故障数据(模拟不同故障程度)加以验证,所建立python-Keras深度学习模型的诊断正确率达到98.2%。用辛辛那提大学滚动轴承全寿命周期数据对退化全过程进行诊断,根据轴承原始信号时域指标变化将全周期分为正常、轻微退化、中度退化、严重退化和失效5种程度,通过一维卷积神经网络对轴承原始数据进行有监督学习,所建立python-Keras深度学习模型的故障诊断平均准确率为93%。  相似文献   

19.
杜小磊  陈志刚  张楠  许旭 《机械强度》2020,42(4):777-785
针对传统滚动轴承故障诊断方法过度依赖专家经验和故障特征提取困难的问题,提出一种基于压缩感知(Compressive Sensing,CS)和改进深层小波神经网络(Deep Wavelet Neural Network,DWNN)方法。首先对采集到的轴承振动信号进行CS降噪并压缩采样;其次设计改进小波自编码器(Wavelet Auto-Encoder,WAE)进而构造DWNN,并引入"跨层"连接缓解网络的梯度消失现象;最后利用大量无标签轴承压缩数据对DWNN进行无监督预训练并利用少量带标签数据对网络有监督微调,进而实现故障判别。实验结果表明提出方法能够有效地对轴承进行多种故障类型和多种故障程度的识别,受先验知识和主观影响较小,避免了复杂的人工特征提取过程,特征提取能力和识别能力优于人工神经网络、深度信念网络、深度稀疏自编码器等模型。  相似文献   

20.
针对双转子轴承复杂信号故障特征难提取、工程中某些类型的故障数据缺乏时卷积神经网络(convolution neural network,简称CNN)难训练的问题,提出一种基于改进CNN和Kmeans的双转子轴承半监督故障诊断方法。首先,利用自回归(autoregressive,简称AR)模型对双转子轴承信号去噪,并基于傅里叶变换得到信号频谱作为CNN输入;其次,以Morlet小波基频域函数作为激活函数构建CNN,结合Softmax损失和提出的权重内积最小化损失在少类别训练数据下训练CNN;最后,基于Kmeans聚类算法分析CNN线性输出确定无标签数据伪标签,并结合半监督学习中自训练思想迭代CNN更新伪标签,继而依据伪标签划分双转子轴承正常、已知故障和未知故障状态。利用双转子轴承故障模拟试验台数据进行验证,结果表明,在少类别训练数据下,其诊断效果相较于人工神经网络(artificial neural network,简称ANN)等方法更佳,诊断准确率达到了100%,验证了所提方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号