首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
采用X射线衍射法对GH742合金激光冲击强化后的表面残余应力进行了测试,采用云纹干涉结合盲孔法对残余应力随深度的分布进行了测试。结果表明:GH742合金经激光单点冲击后,表面残余压应力最高可达1 180MPa,且残余压应力层深度达到1.2mm;50%光斑搭接率强化后的表面残余压应力约为1 100MPa。  相似文献   

2.
为探究高速外圆磨削工艺对18CrNiMo7-6钢残余应力层分布的影响,使用陶瓷结合剂CBN砂轮进行高速磨削试验,对砂轮线速度vs、工件线速度vw、砂轮径向进给速度vfr和砂轮粒度等工艺参数进行了单因素试验分析;设计制作了圆柱工件外圆面辅助剖层夹具,采用X射线衍射仪对工件应力分布进行检测。研究结果表明:高速磨削工艺为工件表面引入残余压应力,工件表面残余压应力随vs的提高小幅增大,vw和vfr对工件表面残余应力的影响规律不明显;X、Y方向的残余应力分布趋势基本一致,但Y方向的应力略大;vfr对残余应力分布影响较大,应力影响层深达到100~150 μm,应力分布中出现残余拉应力;vs对残余应力分布的影响小于vfr的影响,60 m/s时的残余应力呈“塔”形分布;vw没有明显影响规律;230/270粒度的砂轮对残余应力分布影响较大,应力影响层深为80~100 μm,120/140、W20粒度的砂轮影响较为接近;辅助剖层夹具有效提高了圆柱工件残余应力的检测精度和效率,检测效率提高一倍以上。  相似文献   

3.
本文对切削参数和残余应力之间的关系的进行研究.针对某型号高强高硬钢在硬态干车削过程,研究了各切削参数对已加工表面残余应力及残余应力层深分布的影响.结果发现,不同的切削参数条件下,工件已加工表面残余应力可以为拉应力也可以为压应力,残余应力作用层深度为300μm左右.对残余应力影响较大的切削因素为切削速度和进给量,切深对残余应力影响较小,切削参数选择低速低进给时,容易得到有利于提高工件疲劳寿命的表面残余压应力.  相似文献   

4.
针对100 mm和31 mm厚TC4钛合金磁控窄间隙非熔化极惰性气体保护焊(Tungsten inert gas, TIG)试板,采用压痕应变法测量表面残余应力分布,采用全释放应变法测量厚度方向的三维残余应力分布。结果表明,两种厚度试板的焊接残余应力数值有所不同:100 mm厚试板表面纵向和横向残余应力峰值高达600~700 MPa,接近材料屈服强度的70%~80%;31 mm厚试板表面纵向和横向残余应力峰值较低,仅达到材料屈服强度的40%~50%。两种厚度残余应力差异较大的原因主要由较大厚度下横向收缩的累积效应造成。经过650℃的焊后真空热处理,两种厚度的焊接试板纵向和横向应力均显著降低,应力降低幅度最高超过50%,剩余残余应力峰值均不超过200 MPa,焊缝处沿厚度方向分布的各向残余应力均接近零值,表面残余应力出现了重新分布。  相似文献   

5.
利用有限元方法研究了组成分布指数和梯度自润滑层厚度(层厚)对石墨/Ti(C,N)基金属陶瓷梯度自润滑复合材料残余应力的影响;采用层铺-烧结法制备该梯度自润滑复合材料,利用X射线衍射法测试其表面残余应力,并与模拟结果进行了对比.结果表明:径向压应力主要分布在梯度自润滑层的表层,在金属陶瓷基体与梯度自润滑层界面边缘处存在严重的应力集中;随着组成分布指数的增大,表面径向压应力增大,界面处应力减小;增大层厚可以改善界面处的应力分布,但表面径向压应力也随之降低;最佳组成分布指数为1.0~2.0,层厚为1.0~1.5 mm;试验测得的表面残余压应力随层厚的变化与模拟结果基本一致.  相似文献   

6.
针对高强不锈钢车体常用的301L不锈钢搭接接头,采用不同光斑直径光纤激光器和焊接工艺参数,进行激光非熔透焊接工艺研究,获得了激光焊接工艺参数对焊缝成形质量、表面热影响痕迹、焊缝熔化形状和接头拉剪性能的影响规律,并对激光焊接工艺参数的优化原则和方法进行了讨论。结果表明,对于0.8mm内板(301L-H)和1.5mm外板(301L-1.4318)组合,当激光聚焦光斑直径不小于0.4mm且功率大于2kW时,能在较大的参数窗口内确保搭接接头外观和力学性能满足要求;对于光斑直径为0.4mm的光纤激光器,为确保无热影响区痕迹,应精确控制熔深小于1.4mm,为确保拉剪性能大于等价电阻焊接头,结合面熔宽应大于0.8mm;对于母材强度高于930MPa的301L-H不锈钢板搭接接头,剪切拉伸断裂位置始终位于内外板结合面的焊缝处,接头承载能力与结合面熔宽线性相关。  相似文献   

7.
车轴表面的应力状态是决定车轴的使用寿命和机车运行可靠性的关键因素之一,工艺参数对车轴表面应力状态产生重要影响。通过EA4T车轴车削正交试验与单因素试验,研究了工艺参数各因素如切削速度、进给速度、切削深度等对表面残余应力影响规律,揭示了工艺参数与表面残余应力分布关系之间的内在机制,提出了可以反映拉应力和压应力状态的残余应力综合预测模型。研究结果表明:残余应力预测模型对残余应力的产生起到较好的预测效果,与试验结果基本吻合。工艺参数中进给速度对表面残余应力作用最为显著,随进给速度增加,表面残余应力显著增大;其次为切削深度,在一定范围内,随切削深度增加表面残余应力逐渐减小;切削速度对残余应力影响呈波动变化。  相似文献   

8.
喷丸强化会使零件表面产生残余压应力,可以提高零件抗疲劳能力。试验采用正交试验法对螺母表面进行喷丸强化,沿着螺母轴向方向取三个截面进行残余应力测试分析。试验表明喷丸强化后螺母表面的残余应力均为压应力,有利于提高螺母的抗应力腐蚀和抗疲劳能力;螺母直段截面和大圆弧截面的残余压应力分布在(400~500)MPa,大于小圆弧截面的残余压应力;通过SPSS软件对螺母不同截面以及整体残余应力分布进行显著性分析,表面喷丸流量对螺母整体残余应力分布影响较为显著,并且得出了较为优异的喷丸强化工艺参数。  相似文献   

9.
EA4T车轴车削表面完整性研究   总被引:1,自引:0,他引:1  
于鑫  李世涛  孙杰 《工具技术》2014,48(9):77-80
基于EA4T车轴车削正交试验,研究了车削加工工艺参数对车轴表面粗糙度、残余应力分布等表面质量完整性的影响规律,并进行了工艺参数优选。研究结果表明:工艺参数对加工表面粗糙度、轴向与周向残余应力产生较显著影响,且工艺参数对表面粗糙度和残余应力具有相似的影响规律,其中进给量是对加工表面完整性影响最显著的因素。  相似文献   

10.
结合正交试验法和显式动力学分析软件ANSYS/LS-DYNA对不同工艺条件下的喷丸过程进行模拟分析,运用综合评分法对喷丸后的工件表面层残余压应力层深度、表面残余压应力、最大残余压应力值深度及最大残余压应力值4个目标值进行综合评判。通过对综合目标值的极差分析,确定弹丸直径、冲击角度、冲击速度、搭接率、同一位置的冲击次数、弹丸与工件的摩擦因数,以及弹丸材质7个喷丸工艺参数对综合目标值的影响程度,通过综合评判结果分析得出最优的喷丸工艺参数组合方案,并对该工艺参数组合方案进行模拟验证。  相似文献   

11.
建立了激光冲击强化宏观有限元数值模型和细观参量演化数值模型,提出了激光冲击强化三维多尺度模拟方法,分析了激光冲击强化后Inconel 718高温合金残余应力、位错密度、晶粒尺寸的分布规律;考虑激光冲击强化所致残余应力和晶粒细化对疲劳寿命的影响,对Sines疲劳寿命准则进行修正,并进行了试验验证.结果表明:模拟得到试样表面光斑冲击范围内形成了不小于550 MPa的残余压应力,表层区域存在明显的位错增殖,局部晶粒尺寸可细化25%左右,模拟结果与试验结果基本吻合;采用修正Sines准则预测得到的疲劳寿命在3倍分散带内,说明该模型能够较好地预测激光冲击强化后Inconel 718高温合金的疲劳寿命.  相似文献   

12.
《机械强度》2017,(4):875-881
探讨一种研究超声滚压表层残余应力的数值方法。超声滚压过程是一个强烈的塑性变形过程,涉及到复杂的静态和动态冲击挤压。根据该加工技术的原理建立了有限元模型,评估了网格参数、定义了加载方式,并通过304不锈钢圆盘的超声滚压实验对有限元模型进行验证,在此基础上,模拟了超声滚压的加工过程,分析了残余应力分布特点以及各加工参数对其影响规律。结果表明:超声滚压后,材料表面产生了分布均匀的残余压应力,随着深度的增加,残余应力先后出现一次压应力峰值和较小的拉应力峰值最后降低为0。加工参数对残余应力的幅值和深度影响程度不同,静压力、覆盖率和加工次数影响较大,振幅影响较小。  相似文献   

13.
《工具技术》2013,(9):25-30
零件加工表面残余应力对零件的疲劳强度和抗腐蚀性能具有重要影响。本文基于均匀试验方法,以切削速度、每齿进给量和轴向切深为因素,对汽轮机转子材料20Cr2NiMo合金钢进行铣削试验。通过测量不同切削参数下已加工表面的残余应力,采用多元回归方法建立了表面残余应力与切削参数之间的关系模型并得到验证。研究结果表明随着切削速度、每齿进给量和轴向切深的增大,残余拉应力均呈增大趋势;切削参数对表面残余应力的影响程度为v>f z>a p,且三因素之间存在交互作用。最后根据影响规律,为使加工表面呈现压应力状态,给出了切削参数的建议范围。  相似文献   

14.
方军  詹玉婷  靳凯 《机械工程材料》2022,46(2):31-34,42
采用3种不同喷丸强化工艺(干喷丸、先干喷丸后湿喷丸以及湿喷丸)对1Cr11Ni2W2MoV钢螺母表面进行强化处理,比较了喷丸工艺对螺母表面残余应力、粗糙度、显微组织的影响.结果表明:湿喷丸后螺母表面残余压应力最大,且最大残余压应力出现在大圆弧截面处,达到550 MPa,同时表面粗糙度Ra最小,分布在0.75~0.85μ...  相似文献   

15.
表面滚压技术可有效提高金属零件的疲劳强度,借助于有限元数值仿真可以分析、优化滚压工艺基本参数。以电工铝杆连铸结晶轮为研究对象,设计了滚压方案,建立了连续多圈滚压的数值仿真模型,获得了合理的滚压变形与残余应力结果,并分析了滚压参数对残余应力分布规律的影响。仿真结果显示,滚压进给量太大、转速太快都容易造成表层残余应力分布的不均匀甚至产生残余拉应力;合理的滚压圈数在于稳定和保持已经获得的残余压应力,获得较高的表面质量。仿真参数为结晶轮的滚压工艺制订/优化提供重要的指导/参考价值,数值仿真的优化参数经过生产实践验证,达到了显著提高抗疲劳强度和使用寿命的效果。  相似文献   

16.
《机械科学与技术》2017,(2):257-261
为研究平面试件在纵-扭复合振动超声深滚加工后材料应力分布及变化规律,采用有限元方法对Q345钢进行了纵-扭复合振动超声深滚加工残余应力场数值模拟。首先分析了加工后试件材料各应力分量沿深度方向的分布情况,然后研究了静压力、滚压速度、振幅和相位差对加工后材料残余应力的影响规律。结果表明:经纵-扭复合振动超声深滚加工后材料表层残余应力分布较均匀,表面为压应力,压应力沿试件深度方向先增后减;试件最大残余压应力及最大横向残余压应力深度和残余压应力层深度随静压力的增大而增大,随滚压速度的增大而减小,而表面残余压应力和最大纵向残余压应力深度无显著变化;试件横向残余压应力层深度随振幅的增加小幅度地增大,但最大残余压应力幅值和深度和纵向残余压应力层深度几无变化;相位差对残余应力影响可忽略不计。  相似文献   

17.
针对航空铝合金结构件加工的表面质量问题,利用有限元软件ABAQUS建立了基于Johnson-Cook本构的铝合金7050-T7451二维正交热力耦合模型。在相同的切削参数下,比较了传统切削、横向(即切削方向)振动切削和纵向(即轴向)振动切削加工的表面层残余应力,并研究了超声振动切削参数、振动频率、振动幅值下,对残余应力的影响规律;通过引用相关文献残余应力的实验数据,验证了仿真模型的正确性。研究结果表明:3种切削方式的表面残余应力均为压应力,沿深度方向向残余拉应力过渡,并且振动切削可以明显提高工件表面的残余压应力;表面残余压应力随切削速度和切深的提高而减小,表面残余压应力随着振幅或频率的增大而逐渐增大。  相似文献   

18.
采用多级凸包硬质合金挤压工具对镍基高温合金平板中的深小孔进行旋转冷挤压及无旋转冷挤压(主轴转速为0)试验,研究了挤压率(2.4%,3.0%,3.6%)与主轴转速(0,66,200 r·min-1)对孔壁表面完整性及试样疲劳寿命的影响,确定了旋转冷挤压优化工艺。结果表明:与无旋转冷挤压强化工艺相比,旋转冷挤压强化后孔壁表面微裂纹较少,随着主轴转速的增加,微裂纹增多,表面粗糙增大,且相同主轴转速下,挤压率越大,粗糙度越小,表面硬度越高,残余压应力和压应力层厚度越大。优化旋转冷挤压工艺参数为主轴转速66 r·min-1、挤压率3.0%,该工艺下的孔壁表面微裂纹少,塑性变形层较厚(约30μm),表层硬度提升(硬度峰值为515 HV),表面粗糙度较低(Ra为0.298μm),沿深度方向形成了厚度约为450μm、应力峰值为498 MPa的周向残余压应力层;在优化工艺下孔强化后试样的疲劳寿命约为未强化试样的6.6倍,疲劳裂纹源由孔壁表面向内部偏移了约45μm。  相似文献   

19.
围绕高档数控机床基础件的低应力制造问题,研究了残余应力的分布规律,提出从优化制造过程工艺参数出发的降低残余应力方法。明确了铸造、机加工是两个对残余应力的产生起主导作用的工艺环节,采用有限元法对某加工中心床身进行了残余应力分析,得出了该床身在铸造与机加工环节的残余应力大小及分布情况。据此优化铸造残余应力振动时效处理的工艺参数,并分析了铣削加工参数对残余应力的影响。分析结果对数控机床大型基础件的低应力制造提供理论依据,有效保证基础件精度和稳定性。  相似文献   

20.
球罐胀形后残余应力的研究   总被引:1,自引:0,他引:1  
本文用X射线法对模拟胀球过程的宽板试样拉伸前后的残余应力分布进行了测量,用塑性理论及弹塑性有限元对测量结果进行了分析,现场实测了用无模胀球工艺制造的首台200m~3液化气球罐热处理后的残余应力分布。结果表明:球罐胀形后内侧存在横向(垂直于焊缝方向)残余压应力,纵向(平行于焊缝方向)残余应力水平很低,有时也为压应力。胀形后残余应力的这种有利分布,提高了球罐的抗应力腐蚀性能。这是新工艺在防止球罐破坏,保证安全运行方面的独特优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号