首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
研究不同喷射角度下强化研磨处理GCr15轴承钢板表面耐摩擦腐蚀性的影响.通过改变强化研磨喷射角度,在3.5%NaCl中进行摩擦磨损实验,测试其耐摩擦腐蚀性能.并对试样进行金相组织、SEM、显微硬度、质量磨损和表面磨痕分析.在不同喷射角度下的摩擦腐蚀试验下,磨损量分别为0.0925 g、0.0533 g、0.0247 g,低于未处理的试样(0.1311 g),其表面磨痕宽度分别为491.9μm、346.8μm、323.2μm,比未处理的试样低(545.9μm),但是其表面粗糙度分别为Ra0.545μm、Ra0.598μm、Ra0.618μm,比未处理的试样高(0.481μm).当喷射角度由30°增加至90°时,其质量磨损量下降72%,表面磨痕宽度下降41%,表面粗糙度上升18%,强化层厚度增加55%,当喷射角度为90°时,试样的显微硬度最高(HV895.4).由此得出结论:不同喷射角度下强化研磨加工处理GCr15轴承钢板后,材料表层虽然粗糙度有所提升,但是组织尺寸变小、硬度提高、出现组织均匀的致密强化层,在综合条件下材料的耐摩擦腐蚀性能得到提高.  相似文献   

2.
为研究强化研磨加工与轴承工件强度之间的关系,首先从理论上分析表面残余压应力对轴承工件裂纹扩展速率的影响,并通过实验验证强化研磨对提高轴承表面残余应力具有显著效果。结果表明,在保证工件粗糙度的情况下,要提高轴承表面残余应力,在强化研磨加工中喷射压力最好控制在0.4-0.6MPa。  相似文献   

3.
强化研磨是一种基于复合加工方法的抗疲劳、抗腐蚀、抗磨损金属材料精密加工技术,利用该技术可加工出具有残余应力的轴承套圈。为了提高强化研磨轴承套圈的加工质量,在其他工艺参数保持不变的情况下,对工件转速进行了单一变量试验,通过检测轴承套圈内圈沟道表面粗糙度与硬度的变化,分析了工件转速对加工质量的影响及作用机制。  相似文献   

4.
利用ABAQUS有限元仿真软件研究不同喷射角度强化研磨加工GCr15轴承钢板过程的塑性变形,得到不同喷射角度与等效塑性应变沿真实路径距离的关系,并通过拉伸试验进行验证。喷射角度为90°的强化研磨加工伸长率为1.4%,相比未经过强化研磨加工的伸长率数值缩减了2.0%。断口收缩率由空白组的4.9%降低到喷射角为90°的2.2%。结合仿真和试验可知,强化研磨加工中喷射角度越大,塑性变形能力越低,材料加工越难。  相似文献   

5.
简要介绍了强化研磨加工的原理,并讨论了影响强化研磨加工效果的工艺参数,通过实验研究,分析了喷射压力、喷头移动速度、喷射距离这三个主要因素对加工后模具钢表面粗糙度和表面硬度的影响,根据试验数据,分析得出了强化研磨加工针对45#模具钢表面处理的最佳工艺参数为:喷射压力0.5MPa,喷头移动速度50mm/min,喷射距离45mm。  相似文献   

6.
在不同直径组合的轴承钢球、不同粒度组合的研磨粉条件下,对轴承套圈进行强化研磨加工试验,并测量了加工后套圈表面的硬度和粗糙度。试验分析结果表明:随着钢球直径的增大,加工后工件表面硬度先增大后减小;研磨粉粒度越大,加工工件表面粗糙度越小,为强化研磨磨料配比的选择提供了依据。通过加工前后轴承套圈表面SEM扫描,发现加工前较加工后表面光洁,但是加工后的套圈表面出现了许多类似于小坑洼的"油囊",使套圈表面具有自润滑功能,因此可以提高润滑油的利用率,并延长轴承使用寿命。  相似文献   

7.
更正     
《轴承》2014,(1)
正《轴承》2013年11期目次页"试验与分析"栏目"强化研磨加工中喷射压力对工件表面粗糙度的影响"一文,第2作者"包右文"应为"包佑文"。  相似文献   

8.
为了探究强化研磨-超精加工时间对轴承套圈滚道表面粗糙度的影响规律,针对61910轴承内圈进行不同时间的强化研磨加工和超精加工。结果表明:随着强化研磨时间的增加,表面粗糙度先增加后减少,随后保持稳定;随超精加工时间的增加,表面粗糙度快速降低后保持稳定。  相似文献   

9.
从原理上阐述了强化研磨加工方法对工件表面质量的影响,介绍了当前强化研磨设备存在的问题如加工精度不高、自动化程度低、加工效率低等。然后针对这些问题设计一套适用于强化研磨加工方法的控制系统。该控制系统主要通过控制影响强化研磨质量的四个工艺参数(移动速度、喷射距离、喷射时间、喷射压力)来实现自动化加工。  相似文献   

10.
《轴承》2021,(9)
以SKF61910深沟球轴承内圈加工为例,基于Abaqus/Explicit建立强化研磨三维随机碰撞模型,分析强化研磨喷射时间对轴承内圈沟道尺寸和残余应力的影响,结果表明:随喷射时间增加,在2 min前内圈沟道尺寸增大,2~12 min时内圈沟道尺寸减小,12 min后不再显著变化;随喷射时间增加,轴承内圈沟道表面残余应力先增大后趋于稳定。实际强化研磨试验后测量内圈沟道尺寸和残余应力变化,结果与仿真分析变化趋势一致,且误差在允许范围之内。  相似文献   

11.
尹龙  赵波  郭星晨  赵重阳 《中国机械工程》2021,32(10):1172-1180
针对传统加工方式难以获得轴承套圈较小的表面粗糙度和表面波纹度的问题,采用超声辅助内圆磨削的加工方法来改善轴承套圈的表面质量。基于超声内圆磨削单颗磨粒运动轨迹分析,建立了表面粗糙度的理论模型,通过对轴承套圈进行超声内圆磨削试验,研究了各个加工参数对轴承表面质量的影响。研究结果表明:超声内圆磨削加工方法可明显改善轴承的表面质量;增大超声振幅可减小表面粗糙度而表面波纹度会先减小后增大;随着砂轮转速的增大,表面粗糙度及表面波纹度会先减小后增大;磨削深度和进给速度的增大会使表面粗糙度及表面波纹度增大,但超声内圆磨削可减小它们的增加量。  相似文献   

12.
微机控制调心球轴承内圈双沟道一次磨削   总被引:3,自引:0,他引:3  
球面内圈双沟道一次磨削加工技术对保证对称球面加工精度、提高表面粗糙度水平和磨削效率均有利 ,是提高调心球轴承等机械产品加工质量和生产效率的先进技术手段。介绍了对通用磨床实施数控技术改造实现球面内圈双沟道一次磨削的方法、相应的数控系统及砂轮修整中的数字插补控制等技术。附图 7幅 ,参考文献 4篇。  相似文献   

13.
在加工带装球口的单列深沟球轴承时,装球口的加工工艺为热处理前铣削加工,热处理后磨削加工。由于没有专用的磨削机床,无法进行自动磨削,操作者只能手持套圈在砂轮上进行磨削,使装球口锁量尺寸精度无法保证,散差较大,而且劳动强度大,安全性低。通过对加工工艺进行改进,解决了存在的问题;同时,改变了装球口角度,减少了钢球的挤压损伤,提高了轴承质量。  相似文献   

14.
高速电主轴用陶瓷轴承套圈内表面磨削试验研究   总被引:2,自引:0,他引:2  
采用金刚石砂轮对热等静压氮化硅(HIPSN)陶瓷轴承套圈进行精密磨削试验,通过磨削表面粗糙度和扫描电子显微镜(SEM)照片,分析不同磨削参数对工件磨削表面质量的影响,获得陶瓷轴承套圈内表面精密磨削加工的最佳工艺参数.试验还进行了磨削过程中磨削力的测试和比磨削能的计算,分析了陶瓷材料的去除机理.  相似文献   

15.
轴承支撑器是轴承精密加工中的关键部件。本文采用热丝化学气相沉积(简称CVD)法,以丙酮和氢气为碳源,在WC-Co硬质合金轴承支撑器衬底上沉积金刚石薄膜,制备CVD金刚石薄膜涂层轴承支撑器,并应用于轴承的精密磨削加工。结果表明,合理控制衬底材料的预处理和CVD沉积工艺对金刚石薄膜质量、形貌、粗糙度和薄膜与衬底间的附着力有显著影响。与传统硬质合金轴承支撑器相比,CVD金刚石涂层轴承支撑器的耐用度和使用性能显著提高。  相似文献   

16.
重型数控滚齿机主轴均采用静压轴承结构,静压轴承轴瓦面需要精密加工,并且要保证极高的同轴度公差及表面光洁度,使用公司现有加工设备无法保证加工精度达到设计要求.为此设计了一套手动研磨工装,该工装利用高精度磨削研磨套、研磨剂与轴瓦面之间相对运动实现研磨,来完成轴瓦的精密加工,使用效果良好.  相似文献   

17.
为了研究单向碳纤维复合材料在不同磨削纤维角(磨削方向与纤维取向之间的夹角)下表面的磨削特性和机理,通过一系列磨削实验,研究了磨削纤维角对磨削力、粗糙度和表面形貌的影响,并用扫描电镜(SEM)对磨削加工表面的特征进行了分析。结果表明:不同磨削纤维角下的磨削力遵循45°>90°>0°的顺序;表面粗糙度恰好与此相反,磨削纤维角为0°时拥有最差的表面粗糙度;不同磨削纤维角产生不同的损伤形式,磨削纤维角为0°时材料去除机制是以弯曲破坏为主,90°时以剪切破坏为主,45°时则是由弯曲和剪切破坏共同作用导致。  相似文献   

18.
分析了影响深沟球轴承外圆磨削质量的常见原因并提出相应的解决办法,以轻系列61909轴承为例,说明薄壁套圈外圆磨削的注意事项,对轴承加工具有借鉴作用。  相似文献   

19.
微磨削以极高的加工精度和灵活的加工特性在微宏制造领域越来越受到重视。针对钛合金工件的微磨削,运用二次回归正交旋转组合设计方法安排了19组试验,并结合响应曲面法(RSM),分析了微磨削过程中主轴转速、进给速度、磨削深度对表面粗糙度的影响规律。结果表明:在本文的工艺参数范围内,进给速度对微磨削表面粗糙度的影响最大,主轴转速次之,磨削深度影响最小。运用该预测模型,获得了Ra为163nm的磨削表面,为优化微磨削参数和控制表面质量提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号